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Etzioni’s Rorschach Test for Computer
¢ ists
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Moore’s Law?
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Storage Capacity?
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Number of Facebook Users?
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Number of Scientific
Publications?
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Number of Web Pages?
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Number of Actions?
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Computing 2020: Science in an
€ gcl:lttjsalltmmg&lodg every year’

szalaydowdo-deal withe-millions of images ?

/How to deal with millions of inter- \
related research papers ?

How to accumulate general knowledge
automatically from the Web ?

How to deal with billions of shared
users’ perceptions stored at massive
scale ?

KHow to realize the vision of social /
search?
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Machine Learning in an Exponential World

ML = Structured Data + Model + Reasoning

Real world is structured in terms of objects and relations

Relational knowledge can reveal additional correlations
between variables of interest . Abstraction allows one to
compactly model general knowledge and to move to
complex inference

Most effort has gone into the modeling part
How much can the data itself help us to solve a problem?

2014 @
Kristian Kersting technische universitat WROCLAW
(Statistical) Relational Learning dortmund A 12




http://www.cs.washington.edu/research/textrunner/

% TextRunner Search
Object Relation Uncertainty Object

TextRunner took 3 seconds.
Retrieved 256 results for papeLi

Search again:
B 9 Argument 1

paper discusses (34), covers (30), contains (/), 6 more... the following topics paper
paper focuses on (9), discusses (5), addresses (5), 6 more... two topics Predicate
paper focuses on (9), discusses (6), will discuss (4), 4 more... three topics

2 3 « Argument 2
paper provides (11), presents (7), is provides (2), 2 more... an overview of the topic topic
paper covers (6), addresses (3), considers (2) a wide range of topics
paper discusses (3), examines (2), will cover (2), 2 more... four topics
paper was (8) part of the third topic

paper describes clustering (3), discusses (2), and choose (2) related topics Jump to:
paper cover: {5} {2) a numhaor of tanice 124\
Paf\y

Programs will consume, combine, and correlate
Pa o . .
« everything in the universe of structured

= information and help users reason over it.” (s.
Parastatidis et al., Communications of the ACM Vol. 52(12):33-37 ] )
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So, the Real World is Complex and
Uncertain

= Information overload

= Incomplete and contradictory
information

= Many sources and modalities

= Variable number of objects and relations
among them

= Rapid change

How can computer s¥stems handle
these *
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AI and ML: State-of-the-Art

® |ea rning
Decision trees, Optimization, SVMs, ...
Logic
Resolution, WalkSat, Prolog, description logics, ...

Probability

Bayesian networks, Markov networks, Gaussian

®
@

Processes...
® Logic + Learning
@
L

Inductive Logic Programming (ILP)

Learning + Probability

EM, Dynamic Programming, Active Learning, ...

Logic + Probability

Nillson, Halpern, Bacchus, KBMC, ICL, ...
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(First-order) Logic handles Complexity

E.g., rules of chess (which is a tiny problem):
1 page in first-order logic,
~100000 pages in propositional logic,

~100000000000000000000000000000000000000 pages as atomic-state
model

- Many types of entities

- Relations between them

Explicit enumeration - Arbitrary knowledge
Logic 5th C B.C. 19t C
true/false
atomic propositional first-order/relational
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Probability handles Uncertainty

- LE

Probability 17t C 20t C

Sensor noise
Human error

Inconsistencies

5

Unpredictability Many types of entities
Relations between them
EXpllClt enumeration Arbitrary know|edge
Logic 5t C B.C. 19t C

true/false .

v

atomic propositional first-order/relational
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Will Traditional AI Scale ?

“Scaling up the environment
will inevitably overtax the

Probability 17t C 20t C

Sensor noise
Human error

<
\ é E n resources of the current Al
architecture.”

Inconsistencies

Unpredictability Many types of entities
Relations between them
Explicit enumeration Arbitrary knowledge
Logic 5th C B.C. 19t C

true/false

v

atomic propositional first-order/relational
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Statistical Relational Learning / Al

(StarAI*)

Let's deal with uncertainty, objects, and
relations jointly

See also Lise Getoor's
lecture on Friday!

Robotics

... unifies logical and statistical Al,
... solid formal foundations,
... is of interest to many communities.

- Natural domain modelina
obljects, properties,
b relations

Compact, natural models

Properties of entities can
depend on properties of
related entities

Generalization over a

variety of situations

\ <
Ghe study and design of
intelligent agents that
act in noisy worlds
composed of objects
and relations among the

Kristian Kersting
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Classical (Statisitcal)

Statistical Relational Learning

Machine Learning Q\

Stochastic Probability Theory

nd Al

J

Deterministic

Propositional Rule

Probabilistic Logic

Inductive| Logic

Learning earning

Programming (ILP)

Propositional Logic

First Order Logic

No Learning
Prop
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First-Order
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Let’s consider a simple example:
Reviewing Papers

= The grade of a paper at a conference depends
on the paper’s quality and the difficulty of the
conference.

* Good papers may get A’s at easy
conferences

= Good papers may get D’s at top conference

= Weak papers may get B’s at good
conferences

20
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Propositional Logic

= Good papers get A’s at easy
conferences

good (pl) Aconference (cl,easy)=grade(pl,cl, a)
good (p2) Aconference (cl,easy)=grade (p2,cl,a)

good (p3) Aconference (c3,easy)=grade (p3,c3,a)

Number of statements explodes with the number of papers and
conferences

No generalities, thus no (easy) generalization
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First Order Logic

= The grade of a paper at a conference
depends on the paper’s quality and the
difficulty of the conference.
= Good papers get A’s at easy conferences

VP,C [good(P)Aconference (C,easy)=grade (P,C,a)]

Many ‘all universals’ are (almost) false
Even good papers can get either A, B, C

True universals are rarely useful

20
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Modeling the Uncertainty Explicitely

Bayesian Networks: Directed Acyclic Graphs

Random Variables /

Direct Influences

Associate a conditional
probability distribution
to each node

P(X;| pa(X;))

Compact representation of the joint probability distribution

P(X1,...,X,) = H P(X;| pa(X;)

2015. @
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(Reviewing) Bayesian Network ...

P(Qual)
low | middle | high
0.3 0.5 0.2

Kristian Kersting

(Statistical) Relational Learning

=

P(Diff)
low | middle | high
0.2 0.3 0.5

P(Grade)
Qual Diff c b a
low low 0.2 | 05 | 03
low middle | 0.1 0.7 | 0.2

technische universitat
dortmund
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(Reviewing) Bayesian Network ...

P(Qual = low, Diff = middle, Grade = a) = 0.3-0.3-0.2 = 0.018

P(Qual)
low | middle | high
0.3 0.5 0.2

Kristian Kersting

(Statistical) Relational Learning

=

P(Diff)
low | middle | high
0.2 0.3 0.5

P(Grade)
Qual Diff C b a
low low 0.2 | 0.5 | 03
low middle | 0.1 | 0.7 | 0.2

technische universitat
dortmund
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The real world, however, has inter-
related objects

L These ‘instance’ are not independent ! J
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Information Extraction

Parag Singla and Pedro Domingos, “Memory-Efficient Inference in Relational
Domains” (AAAI-06).

Singla, P., & Domingos, P. (2006). Memory-efficent inference in relatonal
domains. In Proceedings of the Twenty-First National Conference on Atrtificial
Intelligence (pp. 500-505). Boston, MA: AAAI Press.

H. Poon & P. Domingos, Sound and Efficient Inference with Probabilistic and
Deterministic Dependencies”, in Proc. AAAI-06, Boston, MA, 2006.

P. Hoifung (2006). Efficent inference. In Proceedings of the Twenty-First National
Conference on Artificial Intelligence.

2014
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Information Extraction
|| Paper

Parag Singla and Pedro Domingos, “Memory-Efficient Inference in Relational
Domains” (AAAI-06).

Singla, P., & Domingos, P. (2006). Memory-efficent inference in relatonal
domains. In Proceedings of the Twenty-First National Conference on Atrtificial
Intelligence (pp. 500-505). Boston, MA: AAAI Press.

H. Poon & P. Domingos, Sound and Efficient Inference with Probabilistic and
Deterministic Dependencies”, in Proc. AAAI-06, Boston, MA, 2006.

P. Hoifung (2006). Efficent inference. In Proceedings of the Twenty-First National
Conference on Artificial Intelligence.
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|| Author
M Title
|| Paper B Venue

Parag Singlajand Pedro Domingos),|‘Memory-Efficient Inference in Relationa'

Singla, P., & Domingos, P.|(2006). Memory-efficent inference in relatonal

Segmentation

H. Poon & |P. Domingos,Sound and Efficient Inference with Probabilistic an
Deterministic Dependencies]’, in

P. Hoifung|(2006). |Efficent inference| In
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Entity Resolution
[ ]

| Author
M Title
Paper B Venue

Parag Singlajand Pedro Domingos,

“Memory-Efficient Inference in Relational

Domain

domains. |

Singla, P., & Daghingos,\gX2006).| Memory-efficent inference in relatonal

N\

N\
H. Poon &/|P. Domingos,Sound a jciept |
Determfhistic Dependencies]’,

rence with Probabilistic an

i:| [ 2
P. Hoifung|(2006). |[Efficent inference| In

weiad Aain, ‘instance’ are not independent ! ]
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Topic Models

G%‘?Sle ... ..

Standard Version | Text Version | Image Version News archive search "**' | Advanced news search
Top Stories |PersonalizedNews ¥| Go Auto-generated

-

High court eases limit on obcﬁon ‘issue ads'
Phllndulpnlu Inquirer - 2 hours a
Cai mmldhvllhmonmmgnwﬁdausmtn
lududsday:bdwn:dmwnwumanw it ruled. By
Sen. John McCain, left. a GOP pvudomd
hwmmnmmzmmm ic Sen. .
rolated images »

Israel announces release of 250 Fatah prisoners
CTV.ca - 7 hours ago

Rice Breaks Ice With France's New Leaders
Washington Post - 4 hours ago

US Envoy Says North Korea Disarmament Process
‘Back on Track'
Voice of Amenca - 10 hours ago

Will iPhone change everything — o fall fiat?
Ml Giobe and Mail - 8 hours ago

Google escalates antitrust battle with Microsoft
Seattle Times - 1 hour ago

Kristian Kersting
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0,2 - H Prob.
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‘WIKIPEDIA
The Free Encyclopedia

weiad Again, ‘instance’ are not independent !
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http://www.cs.washington.edu/research/textrunner/

v~ TextRunner Search
Object Relation Uncertainty Opject

TextRunner took 3 seconds.
Retrieved 256 results for paperis@rgument 1 and topic '-
Grouping results by argument28T0up by: predicate | argument

paper - 8
sses (65), covers (54)j addresses|

paper discusses (34), covers (30), contains (7), 6 more... the following to|
paper focuses on (9), discusses (5), addresses (5), 6 more... two topics
paper focuses on (9), discusses (6), will discuss (4), 4 more... three topid
paper provides (11), presents (7), is provides (2), 2 more... an overview g
paper covers (6), addresses (3), considers (2) a wide range of topics
paper discusses (3), examines (2), will cover (2), 2 more... four topics
paper was (8) part of the third topic

paper describes clustering (3), discusses (2), and choose (2) related topi

e_“m No complex inference (yet) !
TextRunner: (Turing, born in, London)
+ WordNet: (London, part of, England)

+ Rule: 'born in’ is transitive thru ‘part
of’

paper covers (5), addresses (2) a number of topics conclusion. Turin born in, En Iand
paper will cover (5), explores (2) a variety of topics " ( 9 ! g )
Paper presented at (7) the Theme issue topic ‘paper briefly (3)
Paper presented at (7) the Special topic %ﬁ%‘ﬂ
white paper provides (6) a high-level overview of the critical topic of backup-to-disk including a clear definition paper title . abstract (1)
paper addresses (5) the topic of World Bank procedures %mr 4
paper describes (3), recommends (2) the specific research topics Each position paper (1)
I R -1~ SN+ R S Lenath of the paper (1)
= ] 7 =
And again, ‘instance’ are not independent !
Kristian Kersting technische universitat
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Relations are everywhere ...

- Hyperlinks in web pages

- References in scientific publications

- Social networks
- Ontologies

and connectivity is important o

- PageRank

Kristian Kersting
(Statistical) Relational Learning dortmund
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Objects + Relations + Uncertainty are

everywhere

Planning
-~y _ L &

EP\EP
B|oInformat|c ﬂ ‘p

17. Natural
‘ ‘ "" Process
TV DET Ap) r

Robotics o‘m get a bad o/enl

\‘.34 ‘x t
( y Data Cleaning

Activity
Recognition

Kristian Kersting technische n
(Statistical) Relational Learning dortmund

Social Networks<.~"

Web data (web) \

Biological data (bio)

Social Network Analysis
(soc)

Bibliographic data (cite)
Epidimiological data (epi)
Communication data
(comm)

Customer networks (cust)

Collaborative filtering
problems (cf)

Trust networks (trust) /
8
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Costs and Benefits of SRL / StarAl

Benefits

Relations can reveal additional
correlations. Abstraction allows for

generalization Better predictive accuracy

Better understanding of domains

Growth path for machine learning
and artificial intelligence

Costs

Learning is much harder
Inference becomes a crucial issue

SRL/StarAl techniques
have the potential to lay
the foundations of next
generation Al systems

ter complexity for user

can make the difference

20
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Yes, SRL/StarAl are challenging but]

So far

= The world is complex and uncertain
= Reviewing papers
= Joint segmentation and entity resolution
= Topic models
Now
Let's get started!

How is statistical relational learning working?

2015. ®
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Main StarAl / SRL Key Dimensions

= Logical language
First-order logic, Horn clauses,
frame systems

= Probabilistic language
Bayesian networks, Markov
networks, PCFGs

= Type of learning

= Generative / Discriminative
= Structure / Parameters
= Knowledge-rich / Knowledge-poor

= Type of inference
= MAP / Marginal

. - . 2
Kristian Kersting " FU” grOUﬂdll‘W@Eﬁ@C&r&w%{&g / @
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-39
(Propositional) LP — Some Notations
4 Fact burglary. atom
head earthquake.
Program Clause alarm :- burglary, earthquake.
marycalls :- alarm.
\ johncalls :- alarm.
body
Herbrand Base (HB) = all atoms in the program
burglary, earthquake, alarm, marycalls, johncalls
Clauses: IF burglary and earthquake are true THEN alarmis true
Two closely related ways to define semantics
1. Model-theoretic
Kristian Kersti :
(Statiatical) R 2. Proof-theoretic 40

20



Model Theoretic: Restrictions on
Possible Worlds

= Herbrand Interpretation
= Truth assigments to all elements of HB

= An interpretation is a model of a clause C &

If the body of C holds then the head holds, too

E B| P(AIBE)
burglary. Earthauglss Buralaps e b|09 01
earthquake. e E 02 038
alarm :- burglary, earthquake. 5 b 09 0.1
marycalls :- alarm. 5 E 0.01 0.99
johncalls :- alarm.

JohnCalls

20
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Proof Theoretic: Restrictions on
Possible Derivations

= A set of clauses can be used to prove that

atoms are entailed by the set of clauses.
Goal

:- johncalls. burgaathquake.

earthquake.
alarm :- burglapyy) sarthopialfmake.
marycalls :- alarm.

johncalls :- alarm
i="alarm.

2015. @
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Stochastic Grammars

Upgrade HMMs (regular
languages) to more complex
languages such as
context-free languages.

1.0

1/3
1/3
1/3

:% :

Weighted Rewrite Rules

— NP, VP

¥¢ — Det, N
NP — NP, PP

Det — the

N — man
N — telescope

R — V, NP

:—> VP, PP

i saw the man with the telescope PP — P, NP

0.
1.
1

1.

0
.0 : V = saw
0

1.0* 13* 05* 05* 1.0~ ... P — with

=0.00231

20
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Upgrading to First-Order Logic

father (rex, fred) . mother (ann, fred) .

father (brian,doro). mother (utta, doro).

(
(
father (fred, henry) . mother (doro, henry) .
pchrom(rex,a). mchorm(rex,a).

(

pchrom(ann,a). mchrom(ann,b).

The maternal information mchrom/2 depends on the maternal and paternal
pchrom/2 information of the mother mother/2:

mchrom (fred,a) . mchrom(fred,b),

or better
mchrom(P,a) :- mother(M,P), pchrom(M,a), mchrom(M,a).
mchrom(P,a) :- mother(M,P), pchrom(M,a), mchrom(M,b).
mchrom(P,b) :- mother (M,P), pchrom(M,a), mchrom(M,b).

2014 @
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Upgrading - continued

Propositional Clausal Logic
Expressions can be true or
false

head body
clause alarm :- burglary, earthquake.
20
Kristian Kersting technische universitat WROCLAW
(Statistical) Relational Learning dortmund 45

Upgrading - continued

Substitution: Maps variables to terms: {M / ann}:

Relational Clausal Logic
Constants and variables refer
to objects

mc (P,a) :- mother (ann,P),pc(ann,a),mc (ann,a).
Herbrand base: set of ground atoms (no variables):

{mc (fred, fred),mc (rex, fred), ..}
Propositional Clausal Logic
Expressions can be true or
false

head body\
clause mc(P,a) :- mother(ann,P),pc(ann,a),mc(ann,a).
. constant
variable (placeholder) atom

Kristian Kersting terms
(Statistical) Relational Learning 46




Upgrading - continued

-Substitution: Maps variables to terms: {M / ann}:
Full Clausal Logic

Functors aggregate objects «» mc(P,a) :- mother (ann,P),pc(ann,a),mc(ann,a).

: i -Herbrand base: set of ground atoms (no variables):
Relational Clausal Logic

Constants and variables refer to
objects

{mc (fred, fred) ,mc (rex, fred), ..}

Propositional Clausal Logic
Expressions can be true or
false

constant

‘ body
head
nat (0) .
clause nat ( (X)) :- nat(X).
/ / Interpretations can be infinite !
functor variable nat (0) ,nat (succ(0)),

Kristian Kersting term atom nat (succ(succ(0))), ...
(Statistical) Relational Learning 47

Inference in First-Order Logic

= Traditionally done by theorem proving
(e.g.: Prolog)

= Main approach within SRL:
Propositionalization followed by “"model
checking”

= Propositionalization:
Create all ground atoms and clauses

= Model checking: Inference in graphical models,
weighted Satisfiability testing

2015. ©
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Forward Chaining

father (rex, fred) . mother (ann, fred) .
father (brian, doro) . mother (utta, doro).
father (fred, henry) . mother (doro, henry) .
pc(rex,a). mc(rex,a).

pC(ann’a) | mC(ann’b) | _

Set of derivable ground atoms = least Herbrand model

mc(fred,a)
. {M/ann, P/fred}
: / \ mc(P,a):- mother(M,P), pc(M,a), mc(M,b).
.=a Mmother(ann,fred).  pc(ann,a) mc(ann,b) father(rex,fred).  wus

20 ©
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Backward Chaining

father (rex, fred) . mother (ann, fred) .
father (brian,doro) . mother (utta, doro).
father (fred, henry) . mother (doro, henry) .
pc(rex,a). mc(rex,a).
pC(ann,a) | mC(ann,b) | _
mc(fred,a)
:- mother(M,P), pc(M,a), mc(M,a).
{Plfred} mc(P,a):- mother(M,P), pc(M,a), mc(M,b).
{P/fred}
mother(M,fred),pc(M,a),mc(M,a) mother(M,fred),pc(M,a),mc(M,b)
mother(ann,fred). mother(ann,fred).
{M/ann} {M/ann}
pc(ann,a),mc(ann,a) pc(ann,a),mc(ann,b)
I pc(ann,a). I pc(ann,a).
mc(ann,a) mc(ann,b)
fail success

50




So far

= Motivation
= Brief review of logic

Now
Let's see some actual SRL frameworks

20
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Alphabetic Soup of SRL 4

" ULR N

. - RISARNLAD LNIBAC.,
= Knowledge-based model construction '
[Wellman et al., 1992]

= PRISM [Sato & Kameya 1997]
= Stochastic logic programs [Muggleton, 1996]

= Probabilistic relational models [Friedman et al.,
1999]

= Bayesian logic programs [Kersting & De Raedt,
2001]

= Bayesian logic [Milch et al., 2005]
= Markov logic [Richardson & Domingos, 2006]

= Relational dependency networks
[Neville & Jensen 2007]

= ProblLog [De Raedt et al., 2007]

1 2014
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[Neville & Jensen 2007]

Relational Dependency Networks

Logical language: SQL queries
Probabilistic language: Dependency

networks
= Conditional probability template for each predicate
= Atoms depend on related atoms () ‘//*\\)

= >1 clause w/ head: aggregate functions
= Cyclic dependencies

Learning:

= Parameters: EM based on Gibbs sampling \__/
= Structure: relational probability trees, boosting

Inference: Gibbs sampling

20
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Markov Log ic [Richardson & Domingos, 2006]

Logical language: “First-order” logic

Probabilistic language: Markov networks
= Syntax: First-order formulas with weights
= Semantics: Templates for Markov net features

Learning:
= Parameters: Generative or discriminative
= Structure: ILP with arbitrary clauses and MAP score

Inference:

= MAP: Weighted satisfiability
= Marginal: MCMC with moves proposed by SAT solver
= Partial grounding + Lazy inference

2014 ©
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Markov Logic

= A Markov Logic Network (MLN) is a set
of pairs (F, w) where
= F is a formula in first-order logic
= W is a real number

# true groundings
of ith clause

/ ™~
‘ Normalization constant ‘ ’ lterate over all first-order MLN formulas ‘

= Together with a finite set of constants, it
defines a Markov network with

= Kind of undirected BLPs

20
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55
Example of First-Order KB
High quality papers get accepted
Co-authors are either both smart or both not
Kristian Kersting technische universitat gﬁ‘@%’j‘@
(Statistical) Relational Learning dortmund Aw octaw 56
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Example of First-Order KB

Vx high _quality(p) = accepted(p)

Vx,y co author(x,y)=> (smart(x) < smart( y))

20 ©
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Markov Logic

Suppose we have constants: alice, bob and p1
1.5 || Vxauthor(x, p) A smart(x) = high _quality(p)

1.1 || Vxhigh _quality(p) = accepted(p)
1.2 || VYx,yco_author(x,y)= (sman‘(x) < smart(y))

© Vx,y Ip author(x, p) A author(y, p) => co _author(x,y)

co_author(bob,alice)

co_author(alice,alice) . co_author(bob,bob)
author(p1,alice)

smart(alice) - smart(bob) author(p1,bob)

high_quality(p1)

co_author(alice,bob)

accepted(p1)

Model holds for a variable
number of objects and

technische universi . .

dortmund relations among objects

Same procedure for different
(numbers of) papers and
conference

29



Most common approach to semantics
and inference

inference respectively (probabilistic) model

= Propositionalization followed by graphical model
checking J

= Propositionalization:
Create all ground atoms and clauses using
essentially forward or backward chaining. Can
be query directed. There even exists first-order
Bayes’ ball variants

20
Kristian Kersting technische universitat 1& ‘SD AW
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Costs and Benefits of the SRL soup

= Benefits
= Rich pool of different languages

= Very likely that there is a language that fits your
task at hand well

= A lot research remains to be done, ;-)
= Costs

= “Learning” SRL is much harder

= Not all frameworks support all kinds of inference
and learning settings

Quite similar to propositional ones! ‘

‘ How do we actually learn relational models from data? ‘

aY)
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Relational Parameter Estimation
e 00 O

Background

Model(1 m(ann,dorothy),

pc(brian)=b,

f(brian,dorothy),
Model(2) y.fred). ‘
bt(cecily)=ab, ifred), ‘
bt(henry)=a, ob),

bt(fred)=?, Model(3)
bt(kim)=a,  pc(rex)=b,
b(bob)=b  bt(doro)=a,

20
Kristian Kersting technische universitat 14 \SDocuw
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Relational Parameter Estimation

Background
m(ann,dorothy),

Model(1)

Pe(brian=b.  fiprian dorothy),

bt Model(2] y,fred), ‘

pt( Dt(cecily)=ab, [fred) .
bt(henry)=a, o).

bi(fred)=?, Model(3)
bt(kim)=a, = pc(rex)=b,
bt(bob)=b  bt(doro)=a,

? Parameter tighting

2014 @
Kristian Kersting technische universitat WROCLAW
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So, apply ,standard™ EM

Logic Program L

Background
m(ann,dorothy),
f(brian,dorothy),

Model(1)
pc(brian)=b,

bt'a;lr:::l 2 fred),

iterate until convergence e )
""’“@gi’” = 7 e o
EX p ecta tl on b((kim)ia, pc(rex)=:,

_© bilbab)=b  bidoro)=a,

Initial Parameters q0

Inference
Current Model
Expected counts of a clause
(M,qk) v
2 E P( head(Gl), body(Gl) | DC )
Ground Instance DataCase DC

> =S P(head(Gl), body(Gl) | DC) ol
Ground Instance DataCase DC MaXl mlzatlon

GIE E Update parameters (ML, MAP)

P( body(Gl) | DC)

Ground Instance DataCase DC [ But hOW do We SeleCt a mOdel ? ]
blariants exists! Combining Rules, Generative, discriminative, max-margin, ... J

Relational Model Selection / Structure Learning
ILP= Machine Learning + Logic Programming

[Muggleton, De Raedt JLP96]

Examples E
Find set of general rules

pos(mutagenic(m,))
mutagenic(X) :- atom(X,A,c),charge(X,A,
0.82)

neg(mutagenic(m,))

mutagenic(X) :- atom(X,A,n),... pos(mutagenic(ms))

!
/
\

/Background Knowledge B\

molecule(m;) molecule(m,)
atom(m;,a;4,c) atom(m,,a,;,0)
atom(m,,a;,,n) atom(m,,a,,n)
bond(m,,a;;,a4,) bond(m,,a,;,a5,)

charge(m;,a;;,0.82)  charge(m,,a,;,0.82)

2014 @
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(3]

TN

RN

I
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Example ILP Algorithm: FOIL w525 266

1990]

mutagenic(X) :- atom(X,A,n),charge(A,0.82)| O

[

mutagenic(X) :- atom(X,A,c),bond(A,B) vl

V...

:- atom(X,A,c)
Coverage = 0.5,0.7

- atom(X,A,c),bond(A,B) |

Coverage = 0.8

- atom(X,A,n)
Coverage = 0.6,0.3

- atom(X,A,n),charge(A,0.82) |

Coverage = 0.6

]

:- atom(X,A,f)

Some objective function, e.g.
[ Coverage =0.4,06 —

percentage of covered positive examples

20
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Vanilla SRL [De Raedt, Kersting ALT04]

mutagenic(X) :- atom(X,A,n),charge(A,0.82)

mutagenic(X) :- atom(X,A,c),bond(A,B) =0882

= Traverses the hypotheses space a la ILP

= Replaces ILP’s 0-1 covers relation by a
“smooth”, probabilistic one [0,1]

cover(e,H B) = P(elH,B)
cover(E,H,B) = H . cover(e, H, B)

2015. @
Kristian Kersting technische universitat WROCLAW
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So, essentially like in the propositional case !

If data is complete:
To update score after local change,
only re-score (counting) families D
that changed poad €
R
@

If data is incomplete:

B To update score after local change, )
reran parameter estimation algorithm

20 ©
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Stru Ctu ra I E M [Friedman et al. 98]

Reiterate

Score &
Parameterize

X
-\ZK

Kristian Kersting technische universitat
(Statistical) Relational Learning dortmund

Computation

}K_.

W OCLAW .68
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[Landwehr, Kersting, De Raedt JMLR 8(Mar):481-507, 2007]

nFOIL = FOIL + Naive Bayes

100,00

90,00

= Clauses are independent features
= Likelihood for parameter estimation

= Conditional likelihood for scoring
clauses

[ atom(X,A,n),charge(A,0.82)
mutagenic(X)
[ atom(X,A,c),bond(A,B)
P(truth value clausesi|truth value target predicate) x P(truth value target predicate)

L Let's have a look at bottom-up, i.e. data-driven J
approaches

ESeveraI variants exists! Top-down, bottom-up, boosting, }

80,00

W nFOIL
EmFOIL
OAleph
®1BC2

70,00 {ld

Predictive Accuracy

memory

f.
Mutagenesis
r.u
Alzheim
bi

2
]
5
gil.
g
=

transfer learning, among others

Relational Pathfinding (richards & Mooney, Anar92]

Find paths of linked ground atoms !formulas
Path " conjunction that is true at least once
Exponential search space of paths
Restricted to short paths

2014 @
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Learning via Hypergraph Lifting

[Kok & Domingos, ICML'09]

-

H ; H
\

Sam | CS1
Sam | CS2
Sara | CS1
\\ //

= Relational DB can be viewed as hypergraph
= Nodes " Constants
= Hyperedges " True ground atoms

20 ©
Kristian Kersting technische universitat WROCLAW
Statistical) Relational Learnin dortmund oc 71
g

Using “2"”-order MLNs

Learning via Hypergraph Lifting

[Kok & Domingos, ICML'09]

__________________

7 - N Teaches

Pete | Sam Pete | CS1
Pete | Saul || Pete | CS2
Paul | Sara aul | CS2

0

Sam | CS1
Sam | CS2
Sara | CS1
\ /
A e R - TAs

Course

= Jointly clusters nodes ‘Lifts’
into higher-level
concepts

= Clusters hyperedges

Advises

Student
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Learning via Hypergraph Liftingo s comingos,

ICML'09]

-

H ; H
\

Trace paths &

convert paths to

) ‘Lifts’
fl I‘St-OI‘der Advises
clauses
Student .73
FindPaths Paths Found
/ Advises( ),O \
Advises( ). O,

Teaches (., Q)

Advises( . Q.
Teaches (. O.

\ TAsO. O) J

2014 @
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Clause Creation

Adxisagks(s) sYNA/ [eaese%bs
Advises(p, s) V not Teaches(
CS3 Cs4

and Teastes( cssCcss )
CS7 CsS8
not Advises(p, s) V not Teaches(p, c)-¥not TAs(s, c)
am CS1 Cs2
and Sara CS3 Cs4
0s( Bl csE cs6 )
ue CS7 CS8

20 ©
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LHL vs. BUSL vs. MSL
Area under Prec-Recall Curve

0.8 IMDB 0.23 UW-CSE
0,6
0,21
0,4
0.2 0,19
0 0,17
1 - Cora
0,8
0,6
0,4
0.2 1
o LHL

2014 @
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min

LHL vs. BUSL vs. MSL

Runtime
16 - IMDB UW-CSE
12 A
12 A
8 - =8
4 4
LHL

0 0

60 -

40 -

<20
0 M

Kristian Kersting
(Statistical) Relational Learning

77

Boosted Statistical Relational Learning

Most SRL approaches seek to find
models with a finite set of parameters

... but we deal within infinite domains!

[ Idea: drop the finite model assumption J

2014
Kristian Kersting technische universitat

(Statistical) Relational Learning dortmund WROCLAW
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Gradient (Tree) Boosting

[Friedman Annals of Statistics 29(5):1189-1232, 2001]

= Models = weighted combination of a large number of small
trees (models)

= Intuition: Generate an additive model by sequentially fitting
small trees to pseudo-residuals from a regression at each
iteration...

20 ©
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Gradient (Tree) Boosting

Main step: estimate a relational regression model

Has been used for several learning tasks such as
aglinment, learning relational dependency models,
learning MLNs, policy estimation, etc.

... and can be extended to deal with latent variables.

2014
Kristian Kersting technische universitat

(Statistical) Relational Learning dortmund WROCLAW
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Relational Dependency Network-Example

— e >

satisfaction(S,B)

] [

takes(S,C)

taughtBy(P,C)
H ratings(P,C,R)
WY

grade(S,C,G)

qC_ Course(C) D>

r —— |
< Difficulty(C,D)
Kristian Kersting

(Statistical) Relational Learning 81

Relational Probability __0PredictFine(x)
Trees speed(X,S), S > 120

= Each conditional
probability job(X, politician)
distribution can be
learned as a tree

= |Leaves are
probabilities

= The final RDN is the
set of these RPTs

Essentially like TILDE [Blockeel & De Raedt 98]

2014

Kristian Kersting technische universitat

(Statistical) Relational Learning dortmund VROCLAW .82




Gradient Tree Boosting

= Find ML parameters, i.e. maximizelog P(Y|X)
without fixing the model structure/features

= Functional Gradient

F,=Fy+A1+...4+A,,

Am = Nm - Exy [ log P(y|x; Fm_l)]

aF‘m—l

20
Kristian Kersting technische universitat 11 “C,D AW
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Boosting RDNs
Fy
Generate
Example [ [Other preds] [Other preds] [Other preds] [Other preds] [Other preds] [
f... [ pred ][ pred ][ pred ][ pred ][ pred ] —
2014 ©
Kristian Kersting technische universitat
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Boosting RDNs
000000 90
00909000

Generate O O ) ®

00000

logP(y;|xi) = ¥(yi; X3) — log Ey/ (1)

dlo P( i|xi) - -

e'¢'(‘yi=l:mi)
Zy, e?¥(y'izy)

Am(yi-x) = 1(y; = 1:%)) = Puo1.(4; = 1i%)

20 ©
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Boosting RDNs
00000

o0
Generate o O ’ .

00000
00000
00000

2014 o O
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Boosting RDNs

o

L 1
o0

g 1
o0

®g0
o0

L 1)
hes

Generate

)
Induce g B | 5 log Pylsi Fno)|
Regression = m—1
Tree

20 ©
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Boosting RDNs

[

O
Generate .
Example ...

000 0 0
000 00

000 0 0

Induce
Regression
Tree

2014 23 O
Kristian Kersting technische universitat WROCLAW
(Statistical) Relational Learning dortmund
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By | =2 log P(y|z; Fon
g Foo | 5 108 Py}t Fno)
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Boosting RDNs
' X

Generate .
Example ,

- [Other preds] [other preds] [Other pred] [othar preds] [other preds] R

+ [

d
. E.,y [BF— log P(y|z; Fm—l)]
Regression m—1

Tree

20 ©
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O Fy+ Aq
@

UW-CSE Results

= Task: Entity Relationship prediction
= Predict advisedBy relation
= Train in 4 areas and test in 1
= Used RDN with Regression Tree Learner

0.888 0.781 0.805
Alchemy 0.535 0.621 0.731 93 hrs
2014 @
Kristian Kersting technische universitat
(Statistical) Relational Learning dortmund VROCLAW 90
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OMOP Results

= Task: Predict Adverse-drug events
= Input: Drugs and conditions (side-effects)

Goal: Predict if a patient is on a given drug
(onDrug(D,P))

Learning “in reverse”
Averaged over 5 train-test sets
Each set is a different drug

Boosting 0.824 0.839 0.753 497.8 s

RDN 0.738 0.736 0.697 39.4 s

ILP + Noisy- 0.420 0.582 0.687 2400 s
Or

20
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Direct Policy Learning

= Value functions can often be much more complex to
represent than the corresponding policy

Goal: cl(a)
= When poli ] 1s than the
Corresp0n| 10 8.9 7.92 7.05,6.28,5.59, 4.97,4.39,3.73,2.72,1.22 | policy

space can be a good idea

Policy: put each block on top of a on the floor

2014 @
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Non-Parametric Policy Gradients

= Assume policy to be expressed using an arbitray potential
function PP
JZ’(S,a,IP) E lIJ(S b)

= Do functional gradient search w.r.t. world-value

I J 1 p. compute
sample 7 Ep E d (S)JT(S G)W/Iocally
@ (s,q) 2754 djt(s a)

20
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Local Evaluation

Q”(S,Cl)\ Monte-Carlo estimate or actor critic

0777,'(S a)

W(s.a) 7(s,a)(1—7(s,a))
ar(s,a) B
—(S,b) = —s(s,a)(s,b)

Kristian Kersting

2015. ©
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Some Experimental Results

f
o0 Y

;‘

xxxxx

IIows us to treat propositional, continuous
and relational features in a unlfled way!

Kristia
(Statis'

Relatlonal data is evefywhere

Relational models take the additional
correlations provided by relations into account

Main insight for parameter estimation:
parameter tighing

Vanilla relational learning approach does a
greedy search by adding/deleting literals/
clauses using some (probabilistic) scoring
function

Learning many weak rules of how to change a
model can be much faster
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