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ABSTRACT
Addressing unfairness in rankings has become an increasingly
important problem due to the growing influence of rankings in
critical decision making, yet existing learning-to-rank algorithms
suffer from multiple drawbacks when learning fair ranking policies
from implicit feedback. Some algorithms suffer from extrinsic
reasons of unfairness due to inherent selection biases in implicit
feedback leading to rich-get-richer dynamics. While those that
address the biased nature of implicit feedback suffer from intrinsic
reasons of unfairness due to the lack of explicit control over the
allocation of exposure based on merit (i.e, relevance). In both cases,
the learned ranking policy can be unfair and lead to suboptimal re-
sults. To this end, we propose a novel learning-to-rank framework,
FULTR, that is the first to address both intrinsic and extrinsic
reasons of unfairness when learning ranking policies from logged
implicit feedback. Considering the needs of various applications,
we define a class of amortized fairness of exposure constraints with
respect to items based on their merit, and propose corresponding
counterfactual estimators of disparity (aka unfairness) and utility
that are also robust to click noise. Furthermore, we provide an
efficient algorithm that optimizes both utility and fairness via a
policy-gradient approach. To show that our proposed algorithm
learns accurate and fair ranking policies from biased and noisy
feedback, we provide empirical results beyond the theoretical
justification of the framework.

1 INTRODUCTION
Implicit feedback from user behavior (e.g., clicks, dwell times, pur-
chases, scroll patterns) [29, 38] is an attractive source of training
data for learning-to-rank (LTR). It is not only abundant in most
application settings, timely, and easier to collect than expert rele-
vance judgments; it also gives all users a voice in what the system
learns. However, does this participatory nature of implicit feedback
automatically ensure that the learned ranking policies are fair? We
argue that both intrinsic and extrinsic factors can lead to unfair
ranking policies if left unchecked.

Intrinsic factors are internal to the ranking system and stem
from the allocation policies that underlie the design of the system.
Specifically, when deciding which ranking is presented to a user,
the ranking system makes an explicit choice of how much exposure
each ranked item receives – where higher-ranked items receive
more exposure and thus more opportunity (e.g., to be purchased or
read) [17, 19].

Merit-based exposure allocation [8, 9, 42, 43] argues that the
fraction of exposure each item receives should be linked to its merit
(i.e., relevance) and that there should be a well-defined relationship
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between merit and exposure allocation. Following this reasoning,
a policy is considered unfair if it does not allocate exposure based
on this defined relationship with merit, and it has been shown that
conventional ranking policies that are merely trained to optimize
the utility to the users can be unfair in their allocation of exposure
to the items [8, 9, 42, 43].

Extrinsic factors that can lead to unfairness typically manifest
themselves as biases in the training data. In particular, in order to
implement the merit-based allocation of exposure, it is important
to have unbiased estimates of merit.

Unfortunately, implicit feedback data is typically biased [28]. One
such bias, called position bias, exists because feedback collected by
these systems is biased towards items ranked highly in the past [30].
Under one-sided feedback like clicks, highly-ranked items receive
more clicks (i.e., positive feedback) due to the increased attention
they receive, which further skews the ranking system and affects
future rankings. This results in a dynamic amplification of position
bias and leads to the well-studied phenomena of rich-get-richer
[1, 28, 30, 41] and few-get-richer [21].

In this paper, we present a framework – called FULTR (Fair Un-
biased Learning-to-Rank) – for designing fair LTR algorithms that
address both intrinsic and extrinsic sources of unfairness. Specifi-
cally, we propose the first method and training algorithm that can
enforce merit-based exposure constraints while at the same time
debiasing logged implicit feedback data. To address intrinsic fair-
ness, we show that existing fairness constraints [9, 42, 43] cannot
be applied under biased feedback, and we define a novel type of
amortized fairness-of-exposure constraint for group-based fairness.
For this type of fairness constraint, we derive counterfactual estima-
tors [30, 44] that can provably correct the position bias that leads to
rich-get-richer dynamics. The latter addresses extrinsic fairness due
to the selection bias that is induced by the presented rankings. To
make the proposed framework operational and practical, we show
how to search the space of fairness-constrained ranking policies via
a policy-gradient algorithm. The evaluation of FULTR rests both in
its theoretical justification as well as in an extensive empirical eval-
uation on real-world datasets. We find that FULTR can effectively
optimize utility and fairness over a range of settings even when
trained with biased and noisy feedback.

2 RELATEDWORK
There have been numerous approaches to defining fairness in dif-
ferent areas of machine learning, including online learning [23],
classification [2, 33], regression [7, 39], and multi-armed bandits
[35]. We focus on fairness in the relatively under-explored domain
of LTR, which has only recently caught attention despite its sub-
stantial implications in a broad range of real-world applications. To
structure the discussion, we follow the distinction of extrinsic and
intrinsic sources of unfairness introduced above.
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Concerning intrinsic fairness, several methods have followed
the concept of demographic parity. Demographic parity does not
consider merit, but merely enforces a proportional allocation be-
tween groups. This is achieved by either reducing the difference in
occurrences of different groups on a subset of the rankings [46] or
by placing a limit on the number of items from each group in the
top-k positions [14, 22, 47].

Merit-based fairness of exposure proposed by Singh and
Joachims [42] makes exposure allocation not merely dependent
on group size, but it allocates exposure to items based on their
merits. The algorithm in [42] shows how this can be formulated
as a linear program over doubly-stochastic matrices. From
its solution, a stochastic ranking policy can be derived via
the Birkhoff-von Neumann decomposition. An alternative is
the integer-programming algorithm of Biega et al. [9], which
dynamically optimizes amortized individual fairness of exposure.
However, both of these methods do not involve learning and
assume full knowledge of the true relevance labels for all items
to be ranked. In practice, true relevance labels are not available,
and one needs to use other learning methods to impute relevance
labels at prediction time. This leads to a two-step process, where
the first regression step is unaware of fairness considerations and
fairness is only introduced during post-processing. We find that
this can lead to situations where fairness post-processing can not
recover from lousy regression estimates. Our FULTR framework,
on the other hand, performs end-to-end learning with fairness, and
it is not limited in this way.

More recently, Zehlike and Castillo [48] proposed an LTRmethod
that incorporates an exposure-based ranking loss along with a
fairness regularizer. However, this algorithm is limited to a fairness
metric that only considers the top-1 position in each ranking but
not how items below are ranked. This limitation was removed in the
work by Singh and Joachims [43], which proposes an end-to-end
LTR method that optimizes both utility and fairness constraints
simultaneously for the full ranking. However, this method does
not consider extrinsic sources of unfairness, and it assumes that
expert-labeled data for all items is available during training. This
is a weaker assumption than the one made in [9, 42], but it still
does not apply to real-world settings where implicit feedback is
used for training. We overcome this limitation by proposing novel
counterfactual estimators that debias extrinsic unfairness in implicit
feedback data due to position bias, presenting the first end-to-end
LTR algorithm with fairness-of-exposure guarantees where expert
relevance labels are not required during training or evaluation.

Another approach to defining intrinsic fairness in rankings with-
out considering exposure as the key criterion focuses on pairwise
comparisons [8, 34]. This approach is more suitable for applications
where the ranking is not presented as part of an interactive sys-
tem, such that exposure is not well-defined. Fairness criteria based
on the pairwise comparison between items count all swaps in the
ranking equally and do not reflect that swapping items at the top
has a stronger effect on exposure than doing so at lower positions.

Switching to extrinsic sources of unfairness, most work on tra-
ditional LTR algorithms [11–13, 27] has assumed that unbiased
relevance judgments by experts are available. However, the field
of information retrieval has long been conscious of the biases in-
herent to implicit feedback and its effect on the ability to rank well

[17, 19, 24, 27, 28]. In particular, various studies have demonstrated
the presence of position bias, where the quantity and quality of the
feedback depend on the rank at which an item is presented.

One approach to modeling and removing position bias is gen-
erative click modeling as surveyed in [16]. Click models provide a
way of modeling bias and estimating relevances of the items being
ranked. These relevance estimates can then be used as a substi-
tute for expert labels in LTR. Click models [10, 15, 16] typically
treat relevance as a latent variable, and perform inference by the
maximizing log-likelihood of clicks. Unfortunately, most click mod-
els suffer from the limitation of requiring large amounts of repeat
impressions for individual query-item pairs, which makes them
inapplicable to tail queries.

Recent and more direct approaches to dealing with position bias
are counterfactual learning methods as proposed in [30, 44]. These
methods use techniques from causal inference like inverse propen-
sity score (IPS) weighting [40] and do not require repeated queries
or latent-variable inference. Instead, they directly optimize over a
debiased utility objective while incorporating click data in a prin-
cipled fashion. Additional algorithms [5, 25] that jointly estimate
the propensities and optimize the performance have been proposed.
Unlike our proposed FULTR framework, existing counterfactual
learning methods do not control for intrinsic unfairness.

Our work focuses on position bias, but another extrinsic source
of bias is trust bias [28]. It captures that position affects not only
attention but also the users’ valuation of the items due to the trust
they place into the ranking system to bring relevant items to the top.
In this paper, we focus on addressing position bias, but conjecture
that trust bias can be incorporated as well using the debiasing
techniques proposed by Agarwal et al. [3].

The only existing method that aims to address both intrinsic
and extrinsic sources of unfairness in rankings is [6]. However, it
requires interactive experimental control in the form of an online
algorithm, whereas FULTR can reuse logged implicit feedback data
from past interactions for learning. This makes them incomparable
since they rely on fundamentally different access to data. To the
best of our knowledge, no other existing method addresses fairness
in rankings while directly learning from logged implicit feedback.

3 LEARNING FAIR RANKING POLICIES
FROM IMPLICIT FEEDBACK

We now present our counterfactual framework for learning fair
ranking policies from biased implicit feedback. Our framework
builds upon the merit-based fairness of exposure approach [42]
and provides the first learning algorithm for enforcing merit-based
fairness with logged implicit feedback. We start by defining the
problem of learning fair ranking policies from implicit feedback in
the context of empirical risk minimization (ERM). This identifies
the need for an unbiased estimator of utility despite the biases in
implicit feedback, so we propose a counterfactual estimator for
this problem. Furthermore, we propose an amortized fairness con-
straint and the corresponding disparity measure, for which we also
provide an unbiased counterfactual estimator. We then analyze
the connection between our disparity measure and the Disparate
Treatment constraint as proposed in [42] and amortized notions
of fairness from [9]. Finally, we analyze the effect of click noise on
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the disparity measure and propose a noise-corrected estimator of
disparity.

3.1 Learning Ranking Policies via ERM
Learning to rank (LTR) is the problem of learning a ranking policy
π from a training set Q of queries. We assume that queries are
drawn i.i.d., q ∼ P(q). Each query q has a set of candidate items
dq that need to be ranked. Items can represent a wide variety of
things depending on the application, e.g., web-pages in the context
of a search engine, jobs in the context of a job board, and movies in
the context of a streaming service. Each item is associated with a
feature vector xq (d) that describes the match between item d and
query q.

In the so-called full-information setting, it is assumed that all
relevances relq (d) of all items d ∈ dq are known. However, it is
expensive to assess the relevance of all items exhaustively.

An alternate source of relevance labels is implicit feedback, as it is
available in virtually unlimited quantities. However, the relevance
labels relq are typically not fully revealed by implicit feedback.
Instead, implicit feedback only provides partial information about
the relevances for a subset of the candidates. We denote this partial
feedback as cq , where cq (d) = 1 indicates positive feedback (e.g.,
click) for item d and cq (d) = 0 indicates the absence of positive
feedback (e.g., no click). We call this the partial-information setting
[30].

The goal of LTR is learning a ranking policy π from a class
of ranking policies Π using the available feedback data for the
training queries inQ . Unlike most other works on LTR, we consider
stochastic ranking policies, where π (r |q) is a distribution over the
rankings r of the candidate set. As will become clear later, stochastic
ranking policies have the advantage of providing more fine-grained
control of exposure and enable gradient-based optimization. Note
that deterministic ranking policies are a special case of stochastic
ranking policies, where all probability mass lies on a single ranking.

In conventional LTR algorithms [11–13, 27], the key objective is
to learn a policy π that maximizes the utilityU (π ) to the users

U (π ) = Eq∼P (q) [U (π |q)] = Eq∼P (q) Er∼π (r |q)
[
∆(r , relq )

]
. (1)

The utility of a ranking r for a query q can be captured by any
ranking metric ∆, like Discounted Cumulative Gain (DCG) [26].
However, utility optimization by itself does not ensure fairness
[42]. We, therefore, include an additional constraint that addresses
intrinsic fairness by enforcing an application-dependent allocation
of exposure based on merit. For simplicity of notation, consider the
case of two groups Gi and G j . To ensure that exposure is allocated
fairly between Gi and G j , we measure unfairness via a disparity
measure Di j (π ), which will be defined in Section 3.3. A perfectly
fair ranking policy has disparity zero. However, more generally, we
may want to restrict [Di j (π )]2 to be no more than some threshold
δ . Combining the fairness constraint with the conventional goal of
optimizing utility in LTR, we define our objective as

π∗ = argmax
π ∈Π

U (π ) s.t. [Di j (π )]2 ≤ δ .

Directly optimizing this objective is not possible for at least
two reasons. First, we do not know the query distribution P(q) to
compute the expectation in Equation (1), but we merely have access

to the sample Q . Second, even computing the utility U (π |q) for
an individual query is problematic, since the relevances relq are
only partially revealed by the implicit feedback cq . The same is true
for the fairness divergence Di j (π ) as defined below, since it also
depends on relevance. We thus need to replace U (π ) and Di j (π )
with estimators Û (π |Q) and D̂i j (π |Q) based on the query sampleQ
and the implicit feedback cq , leading to the following constrained
Empirical Risk Minimization (ERM) objective.

π̂ = argmax
π ∈Π

Û (π |Q) s.t.
[
D̂i j (π |Q)

]2 ≤ δ . (2)

This leads to three challenges that we address in the following. First,
in Section 3.2, we show how to design Û (π |Q) to get unbiased utility
estimates even if we do not have access to true relevance labels
relq but only have access to biased implicit feedback cq . Second,
in Section 3.3, we show how to define estimators of the fairness
disparity D̂i j (π ) that ensure merit-based exposure allocation while
also being unbiased even with only the implicit feedback cq . Finally,
in Section 4, we show how to efficiently solve the resulting training
problem from Equation (2).

3.2 Unbiased Utility Estimator
We begin by defining the ranking metric that we use to measure the
utility of ranking r for query q. We consider the class of additive
ranking metrics, which can be expressed as

∆(r , relq ) =
∑
d ∈dq

f (r (d)) · relq (d),

where r (d) denotes the rank of item d in ranking r and f () can be
any weighting function that depends on r (d). For example, for the
DCG metric, we can set f (r (d)) = 1/log2 (1 + r (d)), while for the
Average Rank metric, we set f (r (d)) = −r (d). For simplicity, we
assume binary relevances, i.e., relq (d) ∈ {0, 1}.

In the partial-information setting, the relevances relq are not
directly available. Furthermore, naively treating cq as a proxy for
relq can suffer from presentation bias. For example, relevant items
ranked at top positions in the presented ranking rq are more likely
to be clicked by users than those ranked at lower positions, con-
founding the relevance signal we would like to train on. As a result,
the learned policy will be skewed towards items already ranked
at top positions by the logging policy, leading to rich-get-richer
dynamics.

To overcome the presentation bias of implicit feedback, follow-
ing [30], we introduce the binary random variable oq (d) indicating
whether the item d is examined by the user. Based on this, we
can model the distribution of oq (d), especially the "propensity"
p(oq (d) = 1|rq ), of observing relq (d) given that ranking rq was pre-
sented when the implicit feedback was logged. With knowledge of
the propensity, we can use Inverse Propensity Score (IPS) weighting
to arrive at the following estimator ∆̂ for the ranking metric ∆ [30]

∆̂(r , cq ) =
∑

d :cq (d )=1

f (r (d))
p(oq (d) = 1|rq )

.
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The estimator is unbiased if all propensities are bounded away from
zero [30]. Furthermore, we can define an estimator of the utility as

Û (π |Q) = 1
|Q |

∑
q∈Q

Û (π |q) = 1
|Q |

∑
q∈Q
Er∼π (r |q)[∆̂(r , cq )].

It is easy to verify that this estimator inherits unbiasedness from
the unbiasedness of ∆̂. Furthermore, the estimator is consistent
under the same condition on the propensities, thus implying that
Û (π |Q) will converge toU (π ) as |Q | increases.

There are multiple choices for modeling the propensityp(oq (d) =
1|rq ) [20, 30]. The most common and simplest one is the position-
based examination model, where p(oq (d) = 1|rq ) depends on only
the position rq (d) of d in the ranking rq presented during logging,

p(oq (d) = 1|rq ) = vrq (d ).
Here vk denotes the examination probability at position k , also
referred to as position bias. A click is observed (cq (d) = 1) whenever
an item is examined (oq (d) = 1) and relevant (relq (d) = 1), with
the addition of noise as discussed in Section 3.5. More elaborate
models also take contextual information beyond rank into account
[20]. Either model can be estimated with swap experiments [30] or
intervention harvesting [4, 20].

This resolves the first extrinsic source of unfairness, namely
that the ranking system uses a biased Û (π |Q) that is corrupted
by position bias. However, an unbiased Û (π |Q) alone does not
guarantee the fairness of exposure, as discussed in the next section.

3.3 Unbiased Fairness Constraints
The work in [42] has shown that an LTR algorithm maximizing
utilityU (π ) can be unfair even ifU (π ) is perfectly known. Therefore
we want to enforce additional criteria of how exposure is allocated
based on merit to counteract such intrinsic sources of unfairness.
In our training problem from Equation (2), this is implemented
through the disparity measure D̂i j (π |Q) in the constraint, which
we now define formally.

As a first step, we define the exposure of an item d in ranking r
as the probability that a user accessing the ranking will examine the
item. This is identical to the examination probability p(oq (d) = 1|r )
defined in Section 3.2, but now this model is applied to not only
the logged ranking rq but all rankings. The exposure of d under a
stochastic ranking policy π for a query q, denoted as Expq (d |π ), is
the expected exposure over all the possible rankings

Expq (d |π ) = Er∼π (r |q)
[
p(oq (d) = 1|r )

]
.

Furthermore, the exposure of group Gi is the aggregate of the
exposure of the group members

Expq (Gi |π ) =
∑
d ∈Gq

i

Expq (d |π ), (3)

where Gq
i = Gi ∩ dq . Similarly, we define the relevance of group

Gi for query q as

relq (Gi ) =
∑
d ∈Gq

i

relq (d). (4)

With these definitions in hand, we define our fairness disparity of
policy π as

Di j (π ) = Eq∼Q [Di j (π |q)], (5)

whereDi j (π |q)measures the disparate exposure ofGi andG j based
on their merit (i.e., relevances) for query q as

Di j (π |q) = relq (G j )Expq (Gi |π ) − relq (Gi )Expq (G j |π ). (6)

Note that the disparity is zero when the following proportionality
between merit and exposure from [42, 43]

Expq (Gi |π )
relq (Gi )

=
Expq (G j |π )

relq (G j )

is fulfilled for all queriesq. The constraint says that exposure should
be allocated to each group proportional to the group’s merit, al-
though other merit-based allocation schemes can be implemented
as well [42].

However, fulfilling the constraint for each query is only a suf-
ficient but not necessary condition for the disparity Di j (π ) to be
zero. As we will discuss in more detail in Section 3.4, the disparity
corresponds to an amortized version of fairness of exposure similar
to [43].

While Expq (Gi |π ) is an expectation that can be computed, we
do have to estimate Di j (π ) with respect to the unknown query
distribution and the unknown relevances. We therefore take the
empirical counterpart of Di j (π ) as

D̂i j (π |Q) = 1
|Q |

∑
q∈Q

D̂i j (π |q). (7)

Furthermore, in the partial-information setting, we can get an un-
biased estimate of relq (Gi ) using the IPS estimator

r̂elq (Gi ) =
∑
d ∈Gq

i

cq (d)
p(oq (d) = 1|rq )

. (8)

This means that relq (Gi ) in Equation (6) is replaced with r̂elq (Gi )
to arrive at the following empirical disparity measure

D̂i j (π |q) = r̂elq (G j )Expq (Gi |π ) − r̂elq (Gi )Expq (G j |π ). (9)

Note that D̂i j (π |q) is unbiased since r̂elq (Gi ) is unbiased and the
exposure terms are non-random constants,

Eoq

[
D̂i j (π |q)

]
=Eoq

[
r̂elq (G j )Expq (Gi |π ) − r̂elq (Gi )Expq (G j |π )

]
=Eoq [r̂elq (G j )]Expq (Gi |π ) − Eoq [r̂elq (Gi )]Expq (G j |π )
=relq (G j )Expq (Gi |π ) − relq (Gi )Expq (G j |π )
=Di j (π |q).

Since D̂i j (π |q) is unbiased for each query q, the aggregate
D̂i j (π |Q) is also unbiased for Di j (π ),

Eq Eoq [D̂i j (π |Q)] = Eq [Di j (π |q)] = Di j (π ).

Furthermore, through the use of Hoeffding bounds, it is possible
to show that D̂i j (π |Q) converges to the true disparity Di j (π ) as |Q |
increases.
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3.4 Relation to other Disparity Measures
In this section, we further investigate the relationship between our
disparity measure from Equation (6) and the Disparate Treatment
constraint as proposed by Singh and Joachims [42]. We show that
under some assumptions, optimizing our disparity measure can
be similar to optimizing an amortized version of the Disparate
Treatment constraint in [42]. However, when such assumptions
do not hold, either disparity measure can be chosen. However, our
measure of disparity provides additional advantages.

The Disparate Treatment constraint as mentioned in [42] states

∀q :
Expq (Gi |π )

relq (Gi )
=

Expq (G j |π )
relq (G j )

.

This constraint expresses that for a given query, the exposure of
each group should be proportional to its relevance. However, this
constraint is difficult to implement with implicit feedback, since
we need an unbiased estimator that eliminates the effect of presen-
tation bias on relevances in this fairness constraint. Specifically, to
estimate 1/relq (Gi ) using cq , we have to know the joint distribution
of oq (d) for all the items inGq

i , which is difficult to model. To avoid
this obstacle, we transform the Disparate Treatment constraint by
multiplying both sides with relq (Gi ) relq (G j )

Expq (Gi |π )/relq (Gi ) = Expq (G j |π )/relq (G j )
⇔ relq (G j )Expq (Gi |π ) = relq (Gi )Expq (G j |π ).

This leads to our measure of disparity in Equation (6).
An alternate path towards a closely related disparity measure us-

ing implicit feedback is the following. We replace the query-specific
exposure and relevances with an amortized notion of exposure and
relevances [9] over the query distribution

Eq [Expq (Gi |π )]
Eq

[
relq (Gi )

] = Eq [Expq (G j |π )]
Eq

[
relq (G j )

] .
This constraint expresses that for all the queries, the amortized
exposure of each group should be proportional to its amortized
relevance. We will show that the disparity

D ′
i j (π ) =

Eq [Expq (Gi |π )]
Eq [relq (Gi )]

−
Eq [Expq (G j |π )]
Eq [relq (G j )]

(10)

is equivalent to disparity measure Di j (π ) defined in the previous
section under two assumptions. First, assume that the total exposure
of both groups is a constant Expq (Gi )+Expq (G j ) = CE . In practice,
the top items receive most of the users’ attention, so the total
exposure for each query is relatively stable even if the size of the
candidate set varies. Secondly, assume that the covariance of the
exposure of groupG j and the total number of relevant items in both
groups, cov[Exp(G j |π ), relq (Gi ) + relq (G j )], is zero. One sufficient
condition for this assumption to be approximately satisfied is when
the numbers of relevant items do not vary much between queries.
Under these two assumptions, the disparity measures Di j (π ) and
D ′
i j (π ) are equivalent up to a constant coefficient

Di j (π ) = Eq [relq (Gi )]Eq [relq (G j )]D ′
i j (π ).

This can be shown by transforming the disparity measure D ′
i j (π )

as follows,

Eq

[
Expq (Gi |π )

]
Eq [relq (Gi )]

−
Eq [Expq (G j |π )]
Eq [relq (G j )]

=
Eq [Expq (Gi |π )]Eq [relq (G j )] − Eq [Expq (G j |π )]Eq [relq (Gi )]

Eq [relq (Gi )]Eq [relq (G j )]

=
Di j (π ) + cov[Expq (G j |π ), relq (Gi )] − cov[Expq (Gi |π ), relq (G j )]

Eq [relq (Gi )]Eq [relq (G j )]
.

The difference between the covariance terms is zero,

cov[Expq (G j |π ), relq (Gi )] − cov[Expq (Gi |π ), relq (G j )]
= cov[Expq (G j |π ), relq (Gi )] − cov[CE − Expq (G j |π ), relq (G j )]
= cov[Exp(G j |π ), relq (Gi ) + relq (G j )] = 0.

Therefore, we have Di j (π ) = Eq [relq (Gi )]Eq [relq (G j )]D ′
i j (π ).

Note that we can also get a consistent estimator of D ′
i j (π ) by

using the IPS estimator of relevances and replacing the expectations
of exposure and relevance with the average over the dataset

D̂ ′
i j (π |Q) =

∑
q∈Q Expq (Gi |π )∑
q∈Q r̂elq (Gi )

−
∑
q∈Q Expq (G j |π )∑
q∈Q r̂elq (G j )

.

As N increases, D̂ ′
i j (π |Q) will converge to D ′

i j (π ). However, the
estimator is not unbiased, which means E[D̂ ′

i j (π |Q)] , D ′
i j (π ). This

bias might increase the error of the estimator. We therefore prefer
the disparity Di j (π ) with its unbiased estimator D̂i j (π ), as defined
in Equations (7) and (9).

3.5 Incorporating Click Noise
Up to now, we assumed that feedback cq is partial but that presence
of feedback (i.e., cq (d) = 1) reveals the relevance label relq (d) in a
noise-free way – precisely that cq (d) = 1 if and only if relq (d) = 1
and oq (d) = 1. In practice, the user might make mistakes when
examining the relevances of items, and we now define the following
noise model. With 1 ≥ ϵ+ > ϵ− ≥ 0,

P
(
cq (d) = 1|reli = 1,oq (d) = 1

)
= ϵ+,

P
(
cq (d) = 1|reli = 0,oq (d) = 1

)
= ϵ−.

If ϵ+ < 1, users might ignore relevant items even after examinations.
If ϵ− > 0, users might give false positive feedback to irrelevant
items after examinations. Fortunately, the IPS estimator of utility is
order-preserving for this type of click noise [30], namely

Eq

[
Û (π1 |Q)

]
> Eq

[
Û (π2 |Q)

]
⇔ U (π1) > U (π2 |q).

Therefore, given enough data, the click noise does not affect the
ability to find the ranking policy with optimal utility.
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By contrast, this property does not hold for the disparity estima-
tor. Specifically, we can observe that

Eoq

[
r̂elq (Gi )Expq (G j |π )

]
=Eoq Ecq |oq

[ ∑
d ∈Gq

i

(cq (d)/p)Expq (G j |π )
]

=
∑
d ∈Gq

i

[
ϵ+relq (d) + ϵ−(1 − relq (d))

]
Expq (G j |π )

=(ϵ+ − ϵ−)relq (Gi )Expq (G j |π ) + ϵ− |Gq
i |Expq (G j |π ),

where p stands for p(oq (d) = 1|rq ). The expectation of the disparity
estimator with click noise is

Eoq

[
D̂i j (π |q)

]
=(ϵ+ − ϵ−)

(
relq (G j )Expq (Gi |π ) − relq (Gi )Expq (G j |π )

)
+ ϵ−

(
|Gq

j |Expq (Gi |π ) − |Gq
i |Expq (G j |π )

)
=(ϵ+ − ϵ−)Di j (π |q) + ϵ−

(
|Gq

j |Expq (Gi |π ) − |Gq
i |Expq (G j |π )

)
.

The additional term is dependent on the policy π . Therefore, the
disparity estimator is not order-preserving,

Eq

[
D̂i j (π1 |Q) − D̂i j (π2 |Q)

]
= (ϵ+−ϵ−)Eq

[
Di j (π1 |Q) − Di j (π2 |Q)

]
+ ϵ− Eq

[
|Gq

j |δ Expq (Gi ) − |Gq
i |δ Expq (G j )

]
,

where δ Exp(Gq
i ) stands for Expq (Gi |π1) − Expq (Gi |π2). This im-

plies that when ϵ− = 0, our IPS estimator for group disparity is con-
sistent for finding an optimal ranking policy regardless of the value
of ϵ+. However, when ϵ− > 0, the disparity estimator is not order-
preserving, which means that there can exist two policies π1 and π2
such that E

[
Di j (π1 |Q)

]
> E

[
Di j (π2 |Q)

]
but D̂i j (π1) < D̂i j (π2).

Given the level of negative noise ϵ−, we can correct the IPS
estimator for group disparity as

D̂i j (π |q, ϵ−) = r̂elq (G j )Expq (Gi |π ) − r̂elq (Gi )Expq (G j |π )

− ϵ−
(
|Gq

j |Expq (Gi |π ) − |Gq
i |Expq (G j |π )

)
.

(11)

Various methods have been proposed for estimating the position
bias vector v for search engines [4, 30, 44]. To get the probability
ϵ− for false-positive noise, we can use a simple intervention similar
to [30]. While identifying relevant items is difficult, identifying
irrelevant items is easier using a simple criteria (e.g., covering no
terms in the query). Therefore, we can insert an itemd that is known
to be irrelevant at position k of the ranking result. The expected
clickthrough rate for the item is

p(cq (d) = 1|relq (d) = 0) = vk · ϵ−.

This means that given the position bias and the clickthrough rate
estimated from the intervention data, we can compute the noise
level ϵ−. Note that the intervention only needs to be performed on
a small set of users and only affects the quality of one position.

4 POLICY-GRADIENT ALGORITHM FOR
FAIR LTR

In the previous section, we defined a general framework for learning
ranking policies from biased and noisy feedback under amortized
fairness of exposure constraints. However, we still need an efficient
algorithm for searching the constrained policy space for the solution
of the training problem in Equation (2). To this effect, we first
define a stochastic ranking policy space based on the Plackett-
Luce ranking model as in [43] and then present a policy-gradient
algorithm that optimizes the training objective.

4.1 Plackett-Luce Ranking Model
We define a stochastic ranking policy space Π based on the Plackett-
Luce model [31, 36]. Specifically, each ranking policy π ∈ Π is de-
fined by a scoring functionhθ .hθ can be any differentiable machine
learning model with parameters θ . hθ takes the feature vectors
xq (d) of all itemsd for the current queryq as input and outputs a vec-
tor of scores hθ (xq ) = (hθ (xq (d1)),hθ (xq (d2)), · · · ,hθ (xq (dnq ))).
Based on this score vector, the probability πθ (r |q) of a ranking
r =< d1,d2, · · · ,dnq > is defined as the product of softmax distri-
butions

πθ (r |q) =
nq∏
i=1

exp(hθ (xq (di )))∑nq
j=i exp(hθ (xq (dj )))

. (12)

Sampling rankings from πθ (r |q) is quite straightforward and
efficient since we use Monte-Carlo estimates over this distribution
of rankings. It can be implemented as sampling from the distribu-
tion softmax(hθ (xq )) without replacement and ranking the items
according to the order in which they are drawn.

4.2 Policy Gradient Training Algorithm
Optimizing the objective in Equation (2) is a constrained optimiza-
tion problem. We use a Lagrange multiplier to solve the problem
via

π̂ = argmax
π

min
λ≥0

Û (π |Q) − λ
( [
D̂i j (π |Q)

]2 − δ
)
.

Instead of solving the minimization problem w.r.t. λ, we search a
specific range of λ ∈ {λ1, · · · , λk }. For each λ, we need to solve

π̂λ = argmax
π

Û (π |Q) − λ
[
D̂i j (π |Q)

]2
. (13)

Afterwards, we can compute the corresponding δλ =
[
D̂i j (π̂λ |Q)

]2

for which the constraint holds. We can then pick the optimal π̂λ
that satisfies δλ ≤ δ and provides maximal utility

∑
q Û (π̂λ |q).

It remains to find an efficient algorithm for solving the now
unconstrained optimization problem in Equation (13). We use sto-
chastic gradient descent (SGD) to iteratively update the parame-
ters of the ranking policy. However, both Û (π |q) and D̂i j (π |q) are
expectations over rankings, and it is intractable to compute these
expectations over the exponential space of rankings. Following [43],
we use sampling via the log-derivative trick of the REINFORCE
algorithm [45] to compute the gradient of Û

∇θ
∑
q

Û (πθ |q) =∇θ
∑
q
Er∼π (r |q)

[
∆̂(r , cq )

]
=
∑
q
Er∼π (r |q)[∇θ logπθ (r |q)∆̂(r , cq )].

(14)
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We also need the gradient of the squared fairness disparity. While
the square of the disparity makes this more complex, the following
transformation provides a quantity that again can be estimated via
Monte-Carlo sampling,

∇θ
[
D̂i j (πθ |Q)

]2

=
2
|Q | D̂i j (πθ |Q)∇θ

[ ∑
q∈Q
Er∼πθ (r |q) d̂iffi j (r |q)

]
=

2
|Q | D̂i j (πθ |Q)

∑
q∈Q
Er∼πθ (r |q)

[
∇θ logπθ (r |q)d̂iffi j (r |q)

]
.

(15)

Note that d̂iffi j (r |q) = M̂
q
G j

Expq (Gi |r ) − M̂
q
Gi

Expq (G j |r ). If we
apply stochastic gradient descent (SGD) for optimization, we have
to compute D̂i j (πθt |Q) on the whole dataset at each step t , which
is quite expensive. Another option is to use the stochastic gradient
estimated by sampling q1,q2 ∼ Q instead of iterating on the queries
in the dataset,

∇θ D̂i j (π |q1,q2) = 2D̂i j (πθ |q1)Er∼πθ
[
∇θ logπθ (r |q2)d̂iffi j (r |q2)

]
.

This gradient estimator is unbiased as long as q1 and q2 are indepen-
dently sampled fromQ . However, it can suffer from high variance
since it is a product. As a trade-off between variance and bias, we
use the running average 1

n
∑n−1
τ=0 D̂i j (πθt−τ |qt−τ ) as an approxima-

tion of
∑
q D̂i j (πθt |q)/|Q | in Equation (15). This is biased since the

disparities are computed on previous parameters, but it can reduce
the variance of sampling from the query set. In practice, we find
this estimator to be very effective.

The expectations over rankings in Equations (14) and (15) are
approximated via Monte-Carlo sampling from the policy πθ (r |q).
Following [43], we subtract a baseline term from the reward [45]
to act as a control variate for variance reduction. The baseline is
the average reward of the Monte-Carlo samples.

While optimizing over stochastic policies, entropy regularization
is used as a method for encouraging exploration as to avoid pre-
mature convergence to suboptimal deterministic policies [32]. We
therefore add the product of entropy of the probability distribution
and a regularization coefficient γ to the objective. We initialize γ
with a large value and reduce it when the validation metric has
stopped improving.

5 EMPIRICAL EVALUATION
We conducted experiments on synthetic click data derived from the
Microsoft Learning to Rank Dataset (Fold1) [37] and the German
Credit Dataset [18]. This allows us to control the experimental con-
ditions and test multiple data distributions to evaluate robustness.

The Microsoft LTR Dataset contains a large number of queries
from Bing with manually-judged relevance labels. We adopt the
train, validation, and test split provided with the dataset. We bina-
rize relevances in the same way as [30], by assigning relq (d) = 1 to
all the items that were judged as 3 or 4 and relq (d) = 0 to judgments
0, 1, and 2. After this step, the dataset becomes extremely sparse,
with only about 2.5% relevant items per query. To better compare
different methods and amplify differences, we remove queries with
less than 20 candidates. For the remaining queries, we sample 20
candidate items with at most 3 relevant items for each query. Since

the dataset does not come with any designated groups, we use the
QualityScore (feature id 133) as the group attribute, dividing items
into two groups with the 40th percentile as the threshold.

The German Credit Dataset contains information about 1000
individuals, where each individual is represented by a feature vector
and labeled as creditworthy or non-creditworthy. We adapt it to an
LTR task following [43]. We randomly split the 1000 individuals
into train, validation, and test sets with ratio 1:1:1. For each query,
we sample 20 individuals from the corresponding set with ratio
9:1 for non-creditworthy individuals to creditworthy individuals
respectively. To define groups, we use the binary feature indicating
whether the purpose is radio/television (attribute id A43) as the
group attribute.

We generate click data for training and validation from the full-
information datasets following [30]. We first train a conventional
Ranking SVMwith 1 percent of the full-information training data as
the logging policy. This logging policy is then used to generate the
rankings for which click data is logged. The click data is generated
by simulating the position-based examination model. We use a
position bias that decays with the presented rank k of the item as
vk = (1/k)η . When not stated otherwise, we use η = 1.

In all experiments, we select model hyperparameters via cross-
validation on the click data generated from the validation set using
the same criterion as in the respective training objective. The per-
formance of the methods is reported on the full-information test
set for which all relevance labels are known. Ranking utility and
fairness are measured with Average DCG [26] and squared disparity
[Di j (π )]2 respectively.

We train FULTR for two types of models: a linear model and a
neural network (one hidden layer with ReLU activation). We use
the SGD optimizer for the linear model and the Adam optimizer
for the neural network. The learning rate is 0.001. We initialize the
coefficient for entropy regularization as γ = 1.0 and reduce it by a
factor of 3 each time the validation metric has stopped improving.
We use a sample size of S = 32 for the Monte-Carlo estimates of
the gradients. We add an L2 regularization term and cross-validate
for the best regularization coefficient.

5.1 Can FULTR learn accurate ranking policies
from biased feedback?

We begin the empirical evaluation by comparing FULTR without
fairness constraints and conventional LTR methods when learning
from partial click data. Here, we ignore fairness considerations but
entirely focus on utility, just like in conventional LTR. For realism,
we inject noise ϵ− = 0.1. We compare FULTR with the following
conventional LTRmethods, determining the hyperparameters based
on the performance on the validation set:

• LambdaRank [11] is a nonlinear ranking model based on
neural networks to optimize DCG. The hyperparameters are
the L2 regularization coefficient and the learning rate.

• Propensity SVM-Rank [30] is an unbiased version of SVM-
Rank [27] and utilizes the IPS estimator to correct position
bias in implicit feedback. The hyperparameter is the regular-
ization coefficient C .

• PG-Rank [43] is an analog of FULTR for the full-info setting.
The hyperparameter is the L2 regularization coefficient.
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Figure 1: Ranking utility performance in terms of training clicks in the partial-info setting (η = 1, ϵ− = 0.1).

Note that the full-information methods LambdaRank and PG-Rank
treat click signals naively as fully revealing the relevances, thus
ignoring the position bias. However, we also add two skylines, Full-
LambdaRank and Full-PG-Rank, which get to see all true relevance
labels, not just the click signals. They represent the maximum per-
formance we could hope to achieve with FULTR, which has access
to only strictly less informative click feedback. For the purpose of
evaluation in this task, we use the highest probability ranking of
the candidate set for each query to compute the metrics over all
the test set queries.

In Figure 1, we show the test-set performance of the conven-
tional LTR methods compared to FULTR. With increasing amounts
of click data on the x-axis, the neural-network version of FULTR ap-
proaches or exceeds the skyline performance of Full-LambdaRank
on both datasets. FULTR with the linear model approaches the sky-
line performance of the linear Full-SVM-Rank on the MSLR dataset,
but it outperforms the skyline performance of linear Full-SVM-Rank
on the German Credit dataset. We conjecture that this is due to
FULTR’s ability to directly optimize utility, instead of optimizing a
loose upper bound like in SVM-Rank.

Baselinemethods that naively ignore position bias, namely Lamb-
daRank and PG-Rank, cannot make effective use of the increased
amount of click data. Their performance is well below FULTR once
a sufficient amount of click data is available, and their learning
curves are quite flat.

Overall, we conclude that FULTR is an LTR algorithm that
achieves state-of-the-art ranking performance when learning from
partial-information feedback. This implies that FULTR is a strong
contender for use in practical applications, and it thus makes sense
to further investigate how far it can also enforce fairness consider-
ations.

5.2 Can FULTR learn fair ranking policies
from biased feedback?

Next, we investigate FULTR’s ability to enforce the merit-based fair-
ness of exposure. As baselines for comparison, we also implemented
the following methods:

• Group-blind is a version of FULTR without any fairness
constraints but with the group attribute masked (i.e., fairness
through unawareness).

• Fair-PG-Rank [43] is also a policy gradient method, but it
naively treats click data as an unbiased relevance signal.

• Equity of Attention, as proposed by Biega et al. [9], is a post-
processing method that optimizes amortized group disparity.

Since the post-processing method requires relevance estimates for
all items, we train a regression model f (xq (d)) on all query-item
pairs in the training set using an unbiased IPS objective for rele-
vance estimation proposed in [6],

L =
∑
q

∑
d ∈dq

(
[f (xq (d))]2 −

2cq (d)
p

f (xq (d)) +
cq (d)
p

)
.

The resulting utility/disparity curves on the test set are shown in
Figure 2. First, note that Group Blind training does not automatically
lead to merit-based fairness of exposure.

Second, FULTR is able to effectively trade-off utility and fairness
on both datasets as we vary the trade-off parameter λ in the ob-
jective. The pattern of the DCG/disparity curve is similar on both
datasets – as λ increases, the disparity goes downwith an associated
drop in DCG as expected. Further increasing λ drives disparity close
to zero. The neural ranking model learned by FULTR can achieve
better utility with lower disparity compared with the linear model
on the MSLR dataset. The neural network version, FULTR-MLP, is
not evaluated on the German Credit dataset since the small scale
of the dataset made it difficult to control over-fitting.

Third, Fair-PG-Rank does not behave in a predictable manner. As
we vary its trade-off parameter λ, utility drops while the disparity
increases on the MSLR dataset. We conjecture that this is due to two
reasons. Firstly, Fair-PG-Rank optimizes disparity per query, instead
of amortized disparity, and secondly, biased clicks lead to a biased
utility objective and bias in the disparity measure of Fair-PG-Rank.

Table 1: Accumulated regression error for both groups.

Dataset Gi G j

MSLR -14.05% -0.09%
German Credit -15.86% -19.47%
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Figure 2: DCG-Disparity curves for FULTR against baselines in the partial-info setting (η = 1, ϵ− = 0).

Fourth, the post-processing method cannot reduce amortized
disparity on the MSLR dataset. To exclude that this failure is due to
the slight difference between disparity definitions, we ran the post-
processing method with ground-truth relevances. This method,
although infeasible in practice, achieves disparities close to zero on
MSLR. On the German Credit dataset, however, the post-processing
method can approach zero disparity with high DCG. To explain
the difference between the two datasets, we show the accumulated
regression errors on both datasets in Table 1. The error is computed
as (∑q

∑
d ∈Gq

i
f (xq (d)) − relq (Gi ))/

∑
q relq (Gi ). We observe that

on the MSLR dataset, the regression model underestimates the
relevance of Gi but estimates the relevance of G j precisely, which
means that the regression model is already unfair between groups
despite its provably unbiased training objective. Naturally, the post-
processing method cannot generate fair rankings from an unfair
relevance model. On the German Credit dataset, the regression
model underestimates the relevance of two groups uniformly, so the
post-processingmethod can correct the ranking to be fair. Therefore,
we conclude that the failure of the post-processing is due to its
two-step nature, where the regression model is trained oblivious
to fairness. In contrast, FULTR is trained end-to-end in one step,
such that it can, for example, discount features that lead to unfair
relevance estimates.

5.3 Can FULTR converge to the performance of
training on the true relevance labels?

We now explore how ranking utility and fairness of FULTR con-
verge as the learning algorithm is given additional click data. The
DCG/Disparity curves with various amounts of training clicks are
shown in Figure 3. We also show the policy learned by a straight-
forward adaptation of FULTR to the full-info setting, which serves
as the skyline that has full knowledge of all relevance labels in
the training set without position bias. With increasing amounts
of click data, FULTR approaches the skyline performance of the
policy learned on the full-info data. The policy learned on 120k
partial-information examples is almost identical to that of the full-
information policy. This demonstrates that an unbiased estimator
of FULTR enables it to converge to the full-information policy given
enough click data. Furthermore, we observe that with the maximal
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Figure 3: DCG-Disparity curves for FULTR in terms of train-
ing clicks on the partial MSLR dataset (η = 1, ϵ− = 0). The
skyline is the policy learned in the full-info setting.

λ, we achieve disparity close to zero over a substantial range of
click-data quantities. However, as expected, larger amounts of click
data lead to higher utility as measured by DCG.

5.4 How important is unbiasedness for utility
and fairness?

We now conduct an ablation study to understand the effect of IPS-
weighting on utility and fairness. In particular, we compare the
following variants of FULTR:

• No-IPS FULTR-Linear: Both utility and disparity estimators
do not use IPS weighting and assume that implicit feedback
reveals full-information relevance labels.

• Utility-IPS FULTR-Linear: The utility estimator is IPS-
weighted, but the disparity estimator is unweighted.

The results are shown in Figure 5. With biased estimates of both
utility and disparity, the No-IPS variant of FULTR achieves subop-
timal utility and cannot reduce disparity to zero. The Utility-IPS
variant can achieve utility similar to that of FULTR, but is fairness
disparity remains higher even for large values of λ. This implies
eliminating selection bias through IPS-weighting is essential for
both utility and fairness.
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Figure 4: DCG-Disparity curves for different group numbers on the partial MSLR dataset (N = 4K and N = 12K , η = 1, ϵ− = 0).
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Figure 5: DCG-Disparity curves for FULTR and two varia-
tions with unweighted utility and disparity estimators on
the partial MSLR dataset (N = 12K ,η = 1, ϵ− = 0).

5.5 Can the disparity estimator adjust to click
noise?
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Figure 6: DCG-Disparity curves of noise-corrected estima-
tors against pure IPS-weighting on the partial MSLR dataset
with click noise (N = 36K and N = 120K , η = 1, ϵ− = 0.1).

Next, we investigate the effectiveness of the noise-corrected
disparity estimator in Equation (11). We use the MSLR dataset with
click noise set to ϵ− = 0.1. Figure 6 shows that the noise-corrected
IPS estimator of Di j (π ) can reduce disparity effectively and achieve
zero disparity, while the IPS estimator without noise correction
cannot reduce disparity effectively. To verify that this is not due
to the lack of data, we increase the amount of training data by a
factor of three. However, more data alone does not help remedy
the problem. This is consistent with the theoretical argument in

Section 3.5, since more training data can only reduce the variance,
while click noise leads to a bias in the disparity estimates.

5.6 Can FULTR ensure fairness between more
than two groups?

So far, all experiments are conducted with only two groups. How-
ever, our method can also deal with multiple groups by modifying
the objective in Equation (2) as

π∗ = argmax
π ∈Π

Û (π |Q) s.t.
∑
Gi ,G j

[
D̂i j (π |Q)

]2
≤ δ .

To validate the effectiveness of FULTR when dealing with multiple
groups, we compare the utility-fairness trade-off for a varying
number of groups in Figure 4. Following the previous setting, we
use QualityScore as the group attribute and partition it into intervals
with equal numbers of items. Figure 4 shows the performance for
2, 5, and 7 groups. We can observe that with a fixed number of
training clicks, the disparity of FULTR increases as the number
of groups increases. With 7 groups, FULTR still has a substantial
disparity even for the largest value of λ. This is due to a lack of
data for each group, as the number of groups is increasing while
the amount of training data remains fixed. However, if we increase
the number of training clicks, FULTR can again achieve disparity
close to zero. This demonstrates that FULTR can deal with multiple
groups, but with more number of groups, FULTR requires more
training data.

6 CONCLUSION
We presented a framework, FULTR, for learning accurate and fair
ranking policies from biased feedback that addresses both intrin-
sic and extrinsic sources of unfairness. Specifically, we introduced
fairness-of-exposure constraints that can allocate amortized ex-
posure to the different groups of items based on their amortized
relevance. Furthermore, we proposed counterfactual estimators of
the corresponding disparity measure and utility that remove the
effects of position bias. Both estimators are shown to be unbiased,
and we derived a policy gradient training algorithm that directly op-
timizes both utility and fairness. We also considered click noise and
provided a noise-corrected estimator of disparity. Furthermore, we
presented extensive empirical evidence that FULTR can effectively
learn ranking policies under fairness constraints despite biased and
noisy feedback.
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