
DeepLearning on FPGAs
Introduction to FPGAs

Sebastian Buschjäger

Technische Universität Dortmund - Fakultät Informatik - Lehrstuhl 8

October 24, 2017

1



Recap: Convolution

Observation 1 Even smaller images need a lot of neurons
Our approach Discrete convolution

kc =

r∑

i=1

wi · ci = ~w ∗ ~c

20 120 45 140

180 80 10 120

122 39 70 200

170 20 153 11

∗
−0.5 1

1 −0.5
=

180 · 1− 80 · 0.5− 20 · 0.5 + 120 · 1 = 25010 · 1− 120 · 0.5− 45 · 0.5 + 140 · 1 = 67170 · 1− 20 · 0.5− 122 · 0.5 + 39 · 1 = 138153 · 1− 11 · 0.5− 70 · 0.5 + 200 · 1 = 255

250 67

138 255

image kernel / weights / filter result
DeepLearning on FPGAs 2



Recap: Convolution

Observation 1 Even smaller images need a lot of neurons
Our approach Discrete convolution

kc =

r∑

i=1

wi · ci = ~w ∗ ~c

20 120 45 140

180 80 10 120

122 39 70 200

170 20 153 11

∗
−0.5 1

1 −0.5
=

180 · 1− 80 · 0.5− 20 · 0.5 + 120 · 1 = 250

10 · 1− 120 · 0.5− 45 · 0.5 + 140 · 1 = 67170 · 1− 20 · 0.5− 122 · 0.5 + 39 · 1 = 138153 · 1− 11 · 0.5− 70 · 0.5 + 200 · 1 = 255

250

67

138 255

image kernel / weights / filter result
DeepLearning on FPGAs 2



Recap: Convolution

Observation 1 Even smaller images need a lot of neurons
Our approach Discrete convolution

kc =

r∑

i=1

wi · ci = ~w ∗ ~c

20 120 45 140

180 80 10 120

122 39 70 200

170 20 153 11

∗
−0.5 1

1 −0.5
=

180 · 1− 80 · 0.5− 20 · 0.5 + 120 · 1 = 250

10 · 1− 120 · 0.5− 45 · 0.5 + 140 · 1 = 67

170 · 1− 20 · 0.5− 122 · 0.5 + 39 · 1 = 138153 · 1− 11 · 0.5− 70 · 0.5 + 200 · 1 = 255

250 67

138 255

image kernel / weights / filter result
DeepLearning on FPGAs 2



Recap: Convolution

Observation 1 Even smaller images need a lot of neurons
Our approach Discrete convolution

kc =

r∑

i=1

wi · ci = ~w ∗ ~c

20 120 45 140

180 80 10 120

122 39 70 200

170 20 153 11

∗
−0.5 1

1 −0.5
=

180 · 1− 80 · 0.5− 20 · 0.5 + 120 · 1 = 25010 · 1− 120 · 0.5− 45 · 0.5 + 140 · 1 = 67

170 · 1− 20 · 0.5− 122 · 0.5 + 39 · 1 = 138

153 · 1− 11 · 0.5− 70 · 0.5 + 200 · 1 = 255

250 67

138

255

image kernel / weights / filter result
DeepLearning on FPGAs 2



Recap: Convolution

Observation 1 Even smaller images need a lot of neurons
Our approach Discrete convolution

kc =

r∑

i=1

wi · ci = ~w ∗ ~c

20 120 45 140

180 80 10 120

122 39 70 200

170 20 153 11

∗
−0.5 1

1 −0.5
=

180 · 1− 80 · 0.5− 20 · 0.5 + 120 · 1 = 25010 · 1− 120 · 0.5− 45 · 0.5 + 140 · 1 = 67170 · 1− 20 · 0.5− 122 · 0.5 + 39 · 1 = 138

153 · 1− 11 · 0.5− 70 · 0.5 + 200 · 1 = 255

250 67

138 255

image kernel / weights / filter result
DeepLearning on FPGAs 2



Recap: CNNs and weight sharing

f00 f01 f02

f10 f11 f12

f20 f21 f22
∗ w00 w01

w10 w11

=
w00f00 + w01f01
+w10f10 +w11f11

w00f01 + w01f02
+w10f11 +w11f12

w00f10 + w01f11
+w10f20 +w11f21

w00f11 + w01f12
+w10f21 +w11f22

input ~f weights ~w output ~y

Mathematically:

y
(l)
i,j =

M(l)∑

i′=0

M(l)∑

j′=0

w
(l)
i,j · f

(l−1)
i+i′,j+j′ + b

(l)
i,j = w(l) ∗ f (l−1) + b(l)

f
(l)
i,j = σ(y

(l)
i,j )

M (l) ×M (l) bias matrix!

DeepLearning on FPGAs 3



Recap: Backpropagation for CNNs

Gradient step:

w
(l)
i,j = w

(l)
i,j − α · δ(l) ∗ rot180(f)(l−1)f

(l−1)
i,j

b
(l)
j = b

(l)
j − α · δ

(l)
j

Recursion:

δ(l+1) = δ(l) ∗ rot180(w(l+1)) ·
∂h(yli,j)

∂h(yli,j)

rot180
w00 w01

w10 w11
=

w11 w10

w01 w00

DeepLearning on FPGAs 4



Recap: Backpropagation for CNNs

Gradient step:

w
(l)
i,j = w

(l)
i,j − α · δ(l) ∗ rot180(f)(l−1)f

(l−1)
i,j

b
(l)
j = b

(l)
j − α · δ

(l)
j

Recursion:

δ(l+1) = δ(l) ∗ rot180(w(l+1)) ·
∂h(yli,j)

∂h(yli,j)

rot180
w00 w01

w10 w11
=

w11 w10

w01 w00

DeepLearning on FPGAs 4



Hardware: Current trends

Moore’s law: The number of transistors on a chip doubles every
12− 24 month ⇒ We can double the speed roughly every 2 years

Fact 1: Engineering is currently producing 11− 16nm transistors1

Side-Note: A 4nm transistor can be built from only 7 atoms!
Fact 2: The smaller transistors get, the more quantum effects are
happening. Moore’s law is predicted to expire with 5nm transistors

How to deal with this problem

Multi/Many core systems

Add specialized components in CPU

Use dedicated hardware for specific tasks

1Intel predicts 5nm transistors to be available around 2020.
DeepLearning on FPGAs 5



Hardware: Current trends

Moore’s law: The number of transistors on a chip doubles every
12− 24 month ⇒ We can double the speed roughly every 2 years

Fact 1: Engineering is currently producing 11− 16nm transistors1

Side-Note: A 4nm transistor can be built from only 7 atoms!
Fact 2: The smaller transistors get, the more quantum effects are
happening. Moore’s law is predicted to expire with 5nm transistors

How to deal with this problem

Multi/Many core systems

Add specialized components in CPU

Use dedicated hardware for specific tasks

1Intel predicts 5nm transistors to be available around 2020.
DeepLearning on FPGAs 5



Hardware: Current trends

Moore’s law: The number of transistors on a chip doubles every
12− 24 month ⇒ We can double the speed roughly every 2 years

Fact 1: Engineering is currently producing 11− 16nm transistors1

Side-Note: A 4nm transistor can be built from only 7 atoms!
Fact 2: The smaller transistors get, the more quantum effects are
happening. Moore’s law is predicted to expire with 5nm transistors

How to deal with this problem

Multi/Many core systems

Add specialized components in CPU

Use dedicated hardware for specific tasks

1Intel predicts 5nm transistors to be available around 2020.
DeepLearning on FPGAs 5



Hardware Overview

ASIC

FPGA

GPGPU / CPU

Fact:

speed: fastest

energy: ∼ µW

application specific

costs: expensive

Hope:

speed: faster

energy: ∼ mW

general + specific

costs: cheap

Fact:

speed: fast

energy: ∼ W

general purpose

costs: cheap

DeepLearning on FPGAs 6



Hardware Overview

ASIC FPGA GPGPU / CPU

Fact:

speed: fastest

energy: ∼ µW

application specific

costs: expensive

Hope:

speed: faster

energy: ∼ mW

general + specific

costs: cheap

Fact:

speed: fast

energy: ∼ W

general purpose

costs: cheap

DeepLearning on FPGAs 6



Modular system with common bus

Co-Processor

RAMCPU

Nvidia Titan X
∼ 11 TFLOPS ⇒ ∼ 44 Tb/s

Intel Stratix 10
∼ 9.2 TFLOPS ⇒ ∼ 36.8 Tb/s

Instructions ∼ 300 GIPS ⇒ ∼ 2400 Gb/s
Scientific ∼ 30 GFLOPS ⇒ ∼ 240 Gb/s

DDR3 ∼ 30 Gb/s
DDR4 ∼ 50 Gb/s

DeepLearning on FPGAs 7



Modular system with common bus

Co-Processor

RAMCPU

Nvidia Titan X
∼ 11 TFLOPS ⇒ ∼ 44 Tb/s

Intel Stratix 10
∼ 9.2 TFLOPS ⇒ ∼ 36.8 Tb/s

Instructions ∼ 300 GIPS ⇒ ∼ 2400 Gb/s
Scientific ∼ 30 GFLOPS ⇒ ∼ 240 Gb/s

DDR3 ∼ 30 Gb/s
DDR4 ∼ 50 Gb/s

DeepLearning on FPGAs 7



Modular system with common bus

Co-Processor

RAMCPU

Nvidia Titan X
∼ 11 TFLOPS ⇒ ∼ 44 Tb/s

Intel Stratix 10
∼ 9.2 TFLOPS ⇒ ∼ 36.8 Tb/s

Instructions ∼ 300 GIPS ⇒ ∼ 2400 Gb/s
Scientific ∼ 30 GFLOPS ⇒ ∼ 240 Gb/s

DDR3 ∼ 30 Gb/s
DDR4 ∼ 50 Gb/s

DeepLearning on FPGAs 7



Modular system with common bus

Co-Processor

RAMCPU

Nvidia Titan X
∼ 11 TFLOPS ⇒ ∼ 44 Tb/s

Intel Stratix 10
∼ 9.2 TFLOPS ⇒ ∼ 36.8 Tb/s

Instructions ∼ 300 GIPS ⇒ ∼ 2400 Gb/s
Scientific ∼ 30 GFLOPS ⇒ ∼ 240 Gb/s

DDR3 ∼ 30 Gb/s
DDR4 ∼ 50 Gb/s

DeepLearning on FPGAs 7



Co-Processor: Actual chip with memory interface

RAM Chip

Control

PCIe3
∼ 15 Gb/s
∼ 500 ns

DDR3
∼ 75− 300 Gb/s
∼ 120 ns

SRAM
≥ 270 Gb/s
∼ 2 ns

DeepLearning on FPGAs 8



Co-Processor: Actual chip with memory interface

RAM Chip

Control

PCIe3
∼ 15 Gb/s
∼ 500 ns

DDR3
∼ 75− 300 Gb/s
∼ 120 ns

SRAM
≥ 270 Gb/s
∼ 2 ns

DeepLearning on FPGAs 8



Co-Processor: Actual chip with memory interface

RAM Chip

Control

PCIe3
∼ 15 Gb/s
∼ 500 ns

DDR3
∼ 75− 300 Gb/s
∼ 120 ns

SRAM
≥ 270 Gb/s
∼ 2 ns

DeepLearning on FPGAs 8



Co-Processor: Actual chip with memory interface

RAM Chip

Control

PCIe3
∼ 15 Gb/s
∼ 500 ns

DDR3
∼ 75− 300 Gb/s
∼ 120 ns

SRAM
≥ 270 Gb/s
∼ 2 ns

DeepLearning on FPGAs 8



FPGA: How does it work?

BM IO PU IO BM

BM IO PU IO BM

IO

PU

IO

IO

PU

IO

CL CL CL

CL CL CL

CL CL CL

chip layout 2D grid

configurable connections
between blocks

configurable logic blocks (CL)

input/output blocks (IO)

hard-wired on boards with
standard interface

programmed and flashed with
external PC

DeepLearning on FPGAs 9



FPGA: Signal Routing

BM IO PU IO BM

BM IO PU IO BM

IO

PU

IO

IO

PU

IO

CL CL CL

CL CL CL

CL CL CL

SRAM

DeepLearning on FPGAs 10



FPGA: Configurable Logic Block

BM IO PU IO BM

BM IO PU IO BM

IO

PU

IO

IO

PU

IO

CL CL CL

CL CL CL

CL CL CL

4LUT

SRAM

i1
i2
i3
i4

c

D

C1

implements
{0, 1}4 → {0, 1}

function

configures usage

stores 1 bit

DeepLearning on FPGAs 11



FPGAs: Strengths

Inherent parallelism: We can perform computations in real
parallel in any level of granularity

Large on-chip memory: Modern CPUs offer caches in the
range of ∼ 8Mb. Today’s largest FPGA chips offer on-chip
memory in the range of ∼ 64 Mb

Arbitrary word sizes: Modern CPUs and GPUs are built and
optimized for specific word sizes, e.g. 64 bit. In FPGAs, the
word size is arbitrary and can fit the problem given

Large IO capabilities: Modern CPUs and GPUs have to use
PCIe and direct memory access (DMA) for data IO. FPGAs
are free to use what’s necessary.

DeepLearning on FPGAs 12



FPGAs: Strengths

Inherent parallelism: We can perform computations in real
parallel in any level of granularity

Large on-chip memory: Modern CPUs offer caches in the
range of ∼ 8Mb. Today’s largest FPGA chips offer on-chip
memory in the range of ∼ 64 Mb

Arbitrary word sizes: Modern CPUs and GPUs are built and
optimized for specific word sizes, e.g. 64 bit. In FPGAs, the
word size is arbitrary and can fit the problem given

Large IO capabilities: Modern CPUs and GPUs have to use
PCIe and direct memory access (DMA) for data IO. FPGAs
are free to use what’s necessary.

DeepLearning on FPGAs 12



FPGAs: Strengths

Inherent parallelism: We can perform computations in real
parallel in any level of granularity

Large on-chip memory: Modern CPUs offer caches in the
range of ∼ 8Mb. Today’s largest FPGA chips offer on-chip
memory in the range of ∼ 64 Mb

Arbitrary word sizes: Modern CPUs and GPUs are built and
optimized for specific word sizes, e.g. 64 bit. In FPGAs, the
word size is arbitrary and can fit the problem given

Large IO capabilities: Modern CPUs and GPUs have to use
PCIe and direct memory access (DMA) for data IO. FPGAs
are free to use what’s necessary.

DeepLearning on FPGAs 12



FPGAs: Strengths

Inherent parallelism: We can perform computations in real
parallel in any level of granularity

Large on-chip memory: Modern CPUs offer caches in the
range of ∼ 8Mb. Today’s largest FPGA chips offer on-chip
memory in the range of ∼ 64 Mb

Arbitrary word sizes: Modern CPUs and GPUs are built and
optimized for specific word sizes, e.g. 64 bit. In FPGAs, the
word size is arbitrary and can fit the problem given

Large IO capabilities: Modern CPUs and GPUs have to use
PCIe and direct memory access (DMA) for data IO. FPGAs
are free to use what’s necessary.

DeepLearning on FPGAs 12



FPGAs: Weaknesses

Slow clock rate: CPUs / GPUs are clocked with ∼ 2− 3
GHz, FPGAs with ∼ 200 Mhz

No abstractions: CPUs / GPUs offer a stack and a heap
with data addressing etc. FPGAs just offer raw hardware

No optimizations: CPUs / GPUs offer a well developed
tool-chain support. Additionally, modern CPUs/GPUs often
offer specialized hardware instructions

Note 1: High-end FPGAs offer clock rates around 800 Mhz
Note 2: High-end FPGAs also offer specialized hardware blocks,
e.g. digital processing units or floating point units
Note 3: Tool support for FPGAs are growing. The so-called 3rd
wave of tools finally enables FPGAs for the mass-market

DeepLearning on FPGAs 13



FPGAs: Weaknesses

Slow clock rate: CPUs / GPUs are clocked with ∼ 2− 3
GHz, FPGAs with ∼ 200 Mhz

No abstractions: CPUs / GPUs offer a stack and a heap
with data addressing etc. FPGAs just offer raw hardware

No optimizations: CPUs / GPUs offer a well developed
tool-chain support. Additionally, modern CPUs/GPUs often
offer specialized hardware instructions

Note 1: High-end FPGAs offer clock rates around 800 Mhz
Note 2: High-end FPGAs also offer specialized hardware blocks,
e.g. digital processing units or floating point units
Note 3: Tool support for FPGAs are growing. The so-called 3rd
wave of tools finally enables FPGAs for the mass-market

DeepLearning on FPGAs 13



FPGAs: Weaknesses

Slow clock rate: CPUs / GPUs are clocked with ∼ 2− 3
GHz, FPGAs with ∼ 200 Mhz

No abstractions: CPUs / GPUs offer a stack and a heap
with data addressing etc. FPGAs just offer raw hardware

No optimizations: CPUs / GPUs offer a well developed
tool-chain support. Additionally, modern CPUs/GPUs often
offer specialized hardware instructions

Note 1: High-end FPGAs offer clock rates around 800 Mhz
Note 2: High-end FPGAs also offer specialized hardware blocks,
e.g. digital processing units or floating point units

Note 3: Tool support for FPGAs are growing. The so-called 3rd
wave of tools finally enables FPGAs for the mass-market

DeepLearning on FPGAs 13



FPGAs: Weaknesses

Slow clock rate: CPUs / GPUs are clocked with ∼ 2− 3
GHz, FPGAs with ∼ 200 Mhz

No abstractions: CPUs / GPUs offer a stack and a heap
with data addressing etc. FPGAs just offer raw hardware

No optimizations: CPUs / GPUs offer a well developed
tool-chain support. Additionally, modern CPUs/GPUs often
offer specialized hardware instructions

Note 1: High-end FPGAs offer clock rates around 800 Mhz
Note 2: High-end FPGAs also offer specialized hardware blocks,
e.g. digital processing units or floating point units
Note 3: Tool support for FPGAs are growing. The so-called 3rd
wave of tools finally enables FPGAs for the mass-market

DeepLearning on FPGAs 13



FPGA: Workflow

high level synthesis

HDL programming synthesis place & route

SDK programming

FPGA

Hardware Description Languages (HDL):

describe hardware on
transistor and gate level
modelling real concurrency
modelling signal flow &
timings

low level bit operations

high level operations like
sums, products, ...

verified using simulator

Note: HDLs are used by hardware designers. HDLs are extremely
low-level, but allow ultimate control over your design
But: HDL designs need time and care → We focus on HLS

DeepLearning on FPGAs 14



FPGA: Workflow

high level synthesis

HDL programming synthesis place & route

SDK programming

FPGA

Hardware Description Languages (HDL):

describe hardware on
transistor and gate level
modelling real concurrency
modelling signal flow &
timings

low level bit operations

high level operations like
sums, products, ...

verified using simulator

Note: HDLs are used by hardware designers. HDLs are extremely
low-level, but allow ultimate control over your design
But: HDL designs need time and care → We focus on HLS

DeepLearning on FPGAs 14



FPGA: Workflow

high level synthesis

HDL programming synthesis place & route

SDK programming

FPGA

Hardware Description Languages (HDL):

describe hardware on
transistor and gate level
modelling real concurrency
modelling signal flow &
timings

low level bit operations

high level operations like
sums, products, ...

verified using simulator

Note: HDLs are used by hardware designers. HDLs are extremely
low-level, but allow ultimate control over your design
But: HDL designs need time and care → We focus on HLS

DeepLearning on FPGAs 14



FPGA: Workflow

high level synthesis

HDL programming synthesis place & route

SDK programming

FPGA

Basic idea: Automatically translate high level code into HDL

Automate tedious work

Compile code specifically
for target device

Lets you explore design
space effectively

Output should be reviewed

Code must be changed for
HLS tool

Only works on subset of
high level language

Note: HLS lets you describe your hardware in C-Code and the
HLS tool will try to guess what you code meant and put that on
the FPGA (more later)

DeepLearning on FPGAs 15



FPGA: Workflow

high level synthesis

HDL programming synthesis place & route

SDK programming

FPGA

Basic idea: Automatically translate high level code into HDL

Automate tedious work

Compile code specifically
for target device

Lets you explore design
space effectively

Output should be reviewed

Code must be changed for
HLS tool

Only works on subset of
high level language

Note: HLS lets you describe your hardware in C-Code and the
HLS tool will try to guess what you code meant and put that on
the FPGA (more later)

DeepLearning on FPGAs 15



FPGA: Workflow

high level synthesis

HDL programming synthesis place & route

SDK programming

FPGA

Basic idea: Automatically translate high level code into HDL

Automate tedious work

Compile code specifically
for target device

Lets you explore design
space effectively

Output should be reviewed

Code must be changed for
HLS tool

Only works on subset of
high level language

Note: HLS lets you describe your hardware in C-Code and the
HLS tool will try to guess what you code meant and put that on
the FPGA (more later)

DeepLearning on FPGAs 15



FPGA: Workflow

high level synthesis

HDL programming synthesis place & route

SDK programming

FPGA

Synthesis: Calculate CL configurations
→ So far: HDL contains abstractions, e.g. summation
→ Thus: Compile these to a gate description, e.g. half/full-adder
⇒ The netlist contains the functionality of all units of the design

Place & Route: Calculate signal routing
→So far: We have netlist with all functional units of our design
⇒ Calculate, which CL implements which functionality and how
they are connected

DeepLearning on FPGAs 16



FPGA: Workflow

high level synthesis

HDL programming synthesis place & route

SDK programming

FPGA

Synthesis: Calculate CL configurations
→ So far: HDL contains abstractions, e.g. summation
→ Thus: Compile these to a gate description, e.g. half/full-adder
⇒ The netlist contains the functionality of all units of the design

Place & Route: Calculate signal routing
→So far: We have netlist with all functional units of our design
⇒ Calculate, which CL implements which functionality and how
they are connected

DeepLearning on FPGAs 16



FPGA: Workflow

high level synthesis

HDL programming synthesis place & route

SDK programming

FPGA

Synthesis: Calculate CL configurations
→ So far: HDL contains abstractions, e.g. summation
→ Thus: Compile these to a gate description, e.g. half/full-adder
⇒ The netlist contains the functionality of all units of the design

Place & Route: Calculate signal routing
→So far: We have netlist with all functional units of our design
⇒ Calculate, which CL implements which functionality and how
they are connected

DeepLearning on FPGAs 16



FPGA: Workflow

high level synthesis

HDL programming synthesis place & route

SDK programming

FPGA

Important: Synthesis and place & route may fail!

Observation 1: HDL and HLS allow us to express things, which
are not existent in hardware, e.g. files
Observation 2: Hardware is usually clocked. Place & route may
fail to provide the necessary timings to achieve the given clock.

Note 1: We aim for a clock around 125− 150 Mhz.
Note 2: Synthesis and place & route perform a lot of
optimizations. Thus this phase is slow (minutes - hours)

DeepLearning on FPGAs 17



FPGA: Workflow

high level synthesis

HDL programming synthesis place & route

SDK programming

FPGA

Important: Synthesis and place & route may fail!

Observation 1: HDL and HLS allow us to express things, which
are not existent in hardware, e.g. files
Observation 2: Hardware is usually clocked. Place & route may
fail to provide the necessary timings to achieve the given clock.

Note 1: We aim for a clock around 125− 150 Mhz.
Note 2: Synthesis and place & route perform a lot of
optimizations. Thus this phase is slow (minutes - hours)

DeepLearning on FPGAs 17



FPGA: Workflow

high level synthesis

HDL programming synthesis place & route

SDK programming

FPGA

Important: Synthesis and place & route may fail!

Observation 1: HDL and HLS allow us to express things, which
are not existent in hardware, e.g. files
Observation 2: Hardware is usually clocked. Place & route may
fail to provide the necessary timings to achieve the given clock.

Note 1: We aim for a clock around 125− 150 Mhz.
Note 2: Synthesis and place & route perform a lot of
optimizations. Thus this phase is slow (minutes - hours)

DeepLearning on FPGAs 17



FPGA: Workflow

high level synthesis

HDL programming synthesis place & route

SDK programming

FPGA

Important: Synthesis and place & route may fail!

Observation 1: HDL and HLS allow us to express things, which
are not existent in hardware, e.g. files
Observation 2: Hardware is usually clocked. Place & route may
fail to provide the necessary timings to achieve the given clock.

Note 1: We aim for a clock around 125− 150 Mhz.
Note 2: Synthesis and place & route perform a lot of
optimizations. Thus this phase is slow (minutes - hours)

DeepLearning on FPGAs 17



FPGA: Workflow

high level synthesis

HDL programming synthesis place & route

SDK programming

FPGA

Observation 1: We can use IP from other programmers1

Observation 2: There are so-called soft processors

Small processors with own ISA

Mostly configurable in terms of Caches, Pipelining etc.

Different optimizations for energy or throughput available

Usually programmed in C-like language with own compiler

DeepLearning on FPGAs 18



FPGA: Workflow

high level synthesis

HDL programming synthesis place & route

SDK programming

FPGA

Observation 1: We can use IP from other programmers1

Observation 2: There are so-called soft processors

Small processors with own ISA

Mostly configurable in terms of Caches, Pipelining etc.

Different optimizations for energy or throughput available

Usually programmed in C-like language with own compiler

1E.g. http://opencores.com/
DeepLearning on FPGAs 18

http://opencores.com/


FPGA: Workflow

high level synthesis

HDL programming synthesis place & route

SDK programming

FPGA

Observation 1: We can use IP from other programmers1

Observation 2: There are so-called soft processors

Small processors with own ISA

Mostly configurable in terms of Caches, Pipelining etc.

Different optimizations for energy or throughput available

Usually programmed in C-like language with own compiler

1E.g. http://opencores.com/
DeepLearning on FPGAs 18

http://opencores.com/


FPGAs as Co-Processors

So: For what do be use FPGAs?

CPUs are optimized towards latency
→ Execute a single operation as fast as possible

GPUs are optimized towards throughput
→ Process as much data a as fast as possible

FPGAs are optimized towards ?

Fact: CPU and GPU designers are smart people!
⇒ It is though to beat a CPU / GPU only with an FPGA

Rule-of-thumb: CPU is good for control flow
FPGAs / GPUs are good for number crunching
Thus: Combine FPGAs with CPUs

DeepLearning on FPGAs 19



FPGAs as Co-Processors

So: For what do be use FPGAs?

CPUs are optimized towards latency
→ Execute a single operation as fast as possible

GPUs are optimized towards throughput
→ Process as much data a as fast as possible

FPGAs are optimized towards ?

Fact: CPU and GPU designers are smart people!
⇒ It is though to beat a CPU / GPU only with an FPGA

Rule-of-thumb: CPU is good for control flow
FPGAs / GPUs are good for number crunching
Thus: Combine FPGAs with CPUs

DeepLearning on FPGAs 19



FPGAs as Co-Processors

So: For what do be use FPGAs?

CPUs are optimized towards latency
→ Execute a single operation as fast as possible

GPUs are optimized towards throughput
→ Process as much data a as fast as possible

FPGAs are optimized towards ?

Fact: CPU and GPU designers are smart people!
⇒ It is though to beat a CPU / GPU only with an FPGA

Rule-of-thumb: CPU is good for control flow
FPGAs / GPUs are good for number crunching
Thus: Combine FPGAs with CPUs

DeepLearning on FPGAs 19



FPGAs as Co-Processors

Either: As PCIe cards in desktop / server systems

Needs a custom written driver for PCIe

Usually needs special licenses on FPGA chip or own PCIe
protocol implementation

Requires full desktop system

Or: fully integrated on development boards

On-board connections are known, thus 1 driver needed

Does not require full desktop system ⇒ Less energy

Our focus: Embedded boards with FPGA Co-Processors

DeepLearning on FPGAs 20



FPGAs as Co-Processors

Either: As PCIe cards in desktop / server systems

Needs a custom written driver for PCIe

Usually needs special licenses on FPGA chip or own PCIe
protocol implementation

Requires full desktop system

Or: fully integrated on development boards

On-board connections are known, thus 1 driver needed

Does not require full desktop system ⇒ Less energy

Our focus: Embedded boards with FPGA Co-Processors

DeepLearning on FPGAs 20



FPGAs as Co-Processors

Either: As PCIe cards in desktop / server systems

Needs a custom written driver for PCIe

Usually needs special licenses on FPGA chip or own PCIe
protocol implementation

Requires full desktop system

Or: fully integrated on development boards

On-board connections are known, thus 1 driver needed

Does not require full desktop system ⇒ Less energy

Our focus: Embedded boards with FPGA Co-Processors

DeepLearning on FPGAs 20



Xilinx Zedboard
Board: Xilinx ZedBoard

ARM Cortex-A9 Dual Core
CPU with 666 Mhz

RAM: 512 Mb DDR RAM

Memory: 512 Kb Cache

FPGA: Xilinx Artix-7 Z-7020

LUT: 53200

CLB: 83000

Block-Ram: 4.9 Mb

DSP: 220

Idea: Run full blown Linux on CPU and connect with FPGA
Thus: Easy software development for “glue” code + fast energy
and efficient computations

CPU: Programmed in C

FPGA: Programmed in C or VHDL/Verilog

Question: How do we combine both?

DeepLearning on FPGAs 21



Xilinx Zedboard
Board: Xilinx ZedBoard

ARM Cortex-A9 Dual Core
CPU with 666 Mhz

RAM: 512 Mb DDR RAM

Memory: 512 Kb Cache

FPGA: Xilinx Artix-7 Z-7020

LUT: 53200

CLB: 83000

Block-Ram: 4.9 Mb

DSP: 220

Idea: Run full blown Linux on CPU and connect with FPGA
Thus: Easy software development for “glue” code + fast energy
and efficient computations

CPU: Programmed in C

FPGA: Programmed in C or VHDL/Verilog

Question: How do we combine both?

DeepLearning on FPGAs 21



Xilinx Zedboard
Board: Xilinx ZedBoard

ARM Cortex-A9 Dual Core
CPU with 666 Mhz

RAM: 512 Mb DDR RAM

Memory: 512 Kb Cache

FPGA: Xilinx Artix-7 Z-7020

LUT: 53200

CLB: 83000

Block-Ram: 4.9 Mb

DSP: 220

Idea: Run full blown Linux on CPU and connect with FPGA
Thus: Easy software development for “glue” code + fast energy
and efficient computations

CPU: Programmed in C

FPGA: Programmed in C or VHDL/Verilog

Question: How do we combine both?

DeepLearning on FPGAs 21



Xilinx Zedboard
Board: Xilinx ZedBoard

ARM Cortex-A9 Dual Core
CPU with 666 Mhz

RAM: 512 Mb DDR RAM

Memory: 512 Kb Cache

FPGA: Xilinx Artix-7 Z-7020

LUT: 53200

CLB: 83000

Block-Ram: 4.9 Mb

DSP: 220

Idea: Run full blown Linux on CPU and connect with FPGA
Thus: Easy software development for “glue” code + fast energy
and efficient computations

CPU: Programmed in C

FPGA: Programmed in C or VHDL/Verilog

Question: How do we combine both?

DeepLearning on FPGAs 21



Software driven System on a Chip development
(SDSoC)

Note: FPGA interface might change
Thus: Linux kernel driver needed for every new hardware block
→ Writing Linux kernel drivers is a though task

Thus: We use software for that: Xilinx SDSoC

Standard eclipse GUI for C/C++ programming

Standard gcc ARM compiler for C/C++ code

HLS automatically compiles C/C++ code to HDL

SDSoC generates a kernel driver based on the HLS’ output

In the end: We get a bootable Linux image for sd card with
integrated hardware accelerator

DeepLearning on FPGAs 22



Software driven System on a Chip development
(SDSoC)

Note: FPGA interface might change
Thus: Linux kernel driver needed for every new hardware block
→ Writing Linux kernel drivers is a though task

Thus: We use software for that: Xilinx SDSoC

Standard eclipse GUI for C/C++ programming

Standard gcc ARM compiler for C/C++ code

HLS automatically compiles C/C++ code to HDL

SDSoC generates a kernel driver based on the HLS’ output

In the end: We get a bootable Linux image for sd card with
integrated hardware accelerator

DeepLearning on FPGAs 22



Software driven System on a Chip development
(SDSoC)

Note: FPGA interface might change
Thus: Linux kernel driver needed for every new hardware block
→ Writing Linux kernel drivers is a though task

Thus: We use software for that: Xilinx SDSoC

Standard eclipse GUI for C/C++ programming

Standard gcc ARM compiler for C/C++ code

HLS automatically compiles C/C++ code to HDL

SDSoC generates a kernel driver based on the HLS’ output

In the end: We get a bootable Linux image for sd card with
integrated hardware accelerator

DeepLearning on FPGAs 22



AXI-Interface

Fact 1: The FPGA can support any hardware interface we desire
Fact 2: The ARMs hardware interface is fixed
⇒ The ARM and the FPGA are connected using the AXI interface

AXI is part of the AMBA protocol stack. It specifies the way how
system-on-a-chip components (CPU, RAM, FPGA...) should talk
to each other. There are 3 variants:

AXI-Lite: easy, simple communication

AXI-Stream: high throughput in streaming settings

AXI: high speed, low latency

Note: HLS generates the desired interface for us

DeepLearning on FPGAs 23



AXI-Interface

Fact 1: The FPGA can support any hardware interface we desire
Fact 2: The ARMs hardware interface is fixed
⇒ The ARM and the FPGA are connected using the AXI interface

AXI is part of the AMBA protocol stack. It specifies the way how
system-on-a-chip components (CPU, RAM, FPGA...) should talk
to each other. There are 3 variants:

AXI-Lite: easy, simple communication

AXI-Stream: high throughput in streaming settings

AXI: high speed, low latency

Note: HLS generates the desired interface for us

DeepLearning on FPGAs 23



AXI-Interface

Fact 1: The FPGA can support any hardware interface we desire
Fact 2: The ARMs hardware interface is fixed
⇒ The ARM and the FPGA are connected using the AXI interface

AXI is part of the AMBA protocol stack. It specifies the way how
system-on-a-chip components (CPU, RAM, FPGA...) should talk
to each other. There are 3 variants:

AXI-Lite: easy, simple communication

AXI-Stream: high throughput in streaming settings

AXI: high speed, low latency

Note: HLS generates the desired interface for us

DeepLearning on FPGAs 23



High Level Synthesis: Interface generation

1 #d e f i n e PRAGMA SUB( x ) Pragma (#x )
2 #d e f i n e DO PRAGMA( x ) PRAGMA SUB( x )
3 float d i f f ( float const pX1 [ dim ] , float const pX2 [ dim ] ) const {
4 DO PRAGMA(HLS INTERFACE s a x i l i t e po r t=pX1 depth=dim ) ;
5 DO PRAGMA(HLS INTERFACE s a x i l i t e po r t=pX2 depth=dim ) ;
6 #pragma HLS INTERFACE s a x i l i t e po r t=r e t u r n
7
8 float sum = 0 ;
9 for ( unsigned int i = 0 ; i < dim ; ++i ) {

10 sum += (pX1 [ i ]−pX2 [ i ] )∗ ( pX1 [ i ]−pX2 [ i ] ) ;
11 }
12
13 return sum ;
14 }

Note 1: In standard C “bool predict(float const pX[dim])”
is the same as “bool predict(float const *pX)”, but HLS
explicitly needs to know the size!

Note 2: We use a special pragma if we need to use parameters
Note 3: s axilite can be replaced by axis for axi-stream

DeepLearning on FPGAs 24



High Level Synthesis: Interface generation

1 #d e f i n e PRAGMA SUB( x ) Pragma (#x )
2 #d e f i n e DO PRAGMA( x ) PRAGMA SUB( x )
3 float d i f f ( float const pX1 [ dim ] , float const pX2 [ dim ] ) const {
4 DO PRAGMA(HLS INTERFACE s a x i l i t e po r t=pX1 depth=dim ) ;
5 DO PRAGMA(HLS INTERFACE s a x i l i t e po r t=pX2 depth=dim ) ;
6 #pragma HLS INTERFACE s a x i l i t e po r t=r e t u r n
7
8 float sum = 0 ;
9 for ( unsigned int i = 0 ; i < dim ; ++i ) {

10 sum += (pX1 [ i ]−pX2 [ i ] )∗ ( pX1 [ i ]−pX2 [ i ] ) ;
11 }
12
13 return sum ;
14 }

Note 1: In standard C “bool predict(float const pX[dim])”
is the same as “bool predict(float const *pX)”, but HLS
explicitly needs to know the size!
Note 2: We use a special pragma if we need to use parameters

Note 3: s axilite can be replaced by axis for axi-stream

DeepLearning on FPGAs 24



High Level Synthesis: Interface generation

1 #d e f i n e PRAGMA SUB( x ) Pragma (#x )
2 #d e f i n e DO PRAGMA( x ) PRAGMA SUB( x )
3 float d i f f ( float const pX1 [ dim ] , float const pX2 [ dim ] ) const {
4 DO PRAGMA(HLS INTERFACE s a x i l i t e po r t=pX1 depth=dim ) ;
5 DO PRAGMA(HLS INTERFACE s a x i l i t e po r t=pX2 depth=dim ) ;
6 #pragma HLS INTERFACE s a x i l i t e po r t=r e t u r n
7
8 float sum = 0 ;
9 for ( unsigned int i = 0 ; i < dim ; ++i ) {

10 sum += (pX1 [ i ]−pX2 [ i ] )∗ ( pX1 [ i ]−pX2 [ i ] ) ;
11 }
12
13 return sum ;
14 }

Note 1: In standard C “bool predict(float const pX[dim])”
is the same as “bool predict(float const *pX)”, but HLS
explicitly needs to know the size!
Note 2: We use a special pragma if we need to use parameters
Note 3: s axilite can be replaced by axis for axi-stream

DeepLearning on FPGAs 24



Deep Learning: Some considerations

Fact 1: DNNs have a lot of parameters
Fact 2: Many SGD steps are required to get reasonable results

We need a lot of data

We need to learn a lot of parameters

We need to perform many SGD steps until convergence

Additional: We want to use Deep Learning in embedded
context’s, such as car, robots, etc.

Important: Model inference is different from model training
→ Optimizations are task specific!

DeepLearning on FPGAs 25



Deep Learning: Some considerations

Fact 1: DNNs have a lot of parameters
Fact 2: Many SGD steps are required to get reasonable results

We need a lot of data

We need to learn a lot of parameters

We need to perform many SGD steps until convergence

Additional: We want to use Deep Learning in embedded
context’s, such as car, robots, etc.

Important: Model inference is different from model training
→ Optimizations are task specific!

DeepLearning on FPGAs 25



Deep Learning: Some considerations

Fact 1: DNNs have a lot of parameters
Fact 2: Many SGD steps are required to get reasonable results

We need a lot of data

We need to learn a lot of parameters

We need to perform many SGD steps until convergence

Additional: We want to use Deep Learning in embedded
context’s, such as car, robots, etc.

Important: Model inference is different from model training
→ Optimizations are task specific!

DeepLearning on FPGAs 25



Deep Learning: A hardware perspective

Clear: DeepLearning greatly benefits from new and fast hardware
Note: This is well known. Many publications date back decades
ago about specialized Neural-Network hardware

Until 2010: Libs for NN mostly CPU based. Research for
dedicated hardware available.

From 2010: GPUs are widely available in mass-market. NN
libs with GPUs backends become popular.

Upcoming: More specialized hardware is being used

Januar 2016: Nvidias Drive PX2 for autonomous cars
June 2016: Googles Tensor Processing Unit (TPU)
May 2017: Googles Tensor Processing Unit 2.0 (TPU)

Currently: GPUs are state-of-the art - Why use FPGAs?

DeepLearning on FPGAs 26



Deep Learning: A hardware perspective

Clear: DeepLearning greatly benefits from new and fast hardware
Note: This is well known. Many publications date back decades
ago about specialized Neural-Network hardware

Until 2010: Libs for NN mostly CPU based. Research for
dedicated hardware available.

From 2010: GPUs are widely available in mass-market. NN
libs with GPUs backends become popular.

Upcoming: More specialized hardware is being used

Januar 2016: Nvidias Drive PX2 for autonomous cars
June 2016: Googles Tensor Processing Unit (TPU)
May 2017: Googles Tensor Processing Unit 2.0 (TPU)

Currently: GPUs are state-of-the art - Why use FPGAs?

DeepLearning on FPGAs 26



Deep Learning: A hardware perspective

Clear: DeepLearning greatly benefits from new and fast hardware
Note: This is well known. Many publications date back decades
ago about specialized Neural-Network hardware

Until 2010: Libs for NN mostly CPU based. Research for
dedicated hardware available.

From 2010: GPUs are widely available in mass-market. NN
libs with GPUs backends become popular.

Upcoming: More specialized hardware is being used

Januar 2016: Nvidias Drive PX2 for autonomous cars
June 2016: Googles Tensor Processing Unit (TPU)
May 2017: Googles Tensor Processing Unit 2.0 (TPU)

Currently: GPUs are state-of-the art - Why use FPGAs?

DeepLearning on FPGAs 26



Deep Learning: Better performance per Watt

Ovtcharov et al. 2015 256× 256 images

GPU 376 images / sec with 235 W ⇒ 0.625 J / image

FPGA 134 images / sec with 25 W ⇒ 0.1866 J / image

Qiu et al. 2016 482× 415 images

GPU 57.9 images / sec with 250 W ⇒ 4.31 J / image

FPGA 4.45 images / sec with 9.3 W ⇒ 2.08 J / image

Thus: FPGAs may offer better performance per watt
Question: How do we bring DNNs to FPGAs?

DeepLearning on FPGAs 27



Deep Learning: Better performance per Watt

Ovtcharov et al. 2015 256× 256 images

GPU 376 images / sec with 235 W ⇒ 0.625 J / image

FPGA 134 images / sec with 25 W ⇒ 0.1866 J / image

Qiu et al. 2016 482× 415 images

GPU 57.9 images / sec with 250 W ⇒ 4.31 J / image

FPGA 4.45 images / sec with 9.3 W ⇒ 2.08 J / image

Thus: FPGAs may offer better performance per watt
Question: How do we bring DNNs to FPGAs?

DeepLearning on FPGAs 27



Deep Learning: Better performance per Watt

Ovtcharov et al. 2015 256× 256 images

GPU 376 images / sec with 235 W ⇒ 0.625 J / image

FPGA 134 images / sec with 25 W ⇒ 0.1866 J / image

Qiu et al. 2016 482× 415 images

GPU 57.9 images / sec with 250 W ⇒ 4.31 J / image

FPGA 4.45 images / sec with 9.3 W ⇒ 2.08 J / image

Thus: FPGAs may offer better performance per watt
Question: How do we bring DNNs to FPGAs?

DeepLearning on FPGAs 27



Deep Learning on FPGAs

Design Goal Use on-chip memory whenever possible

Plan
Reduce size of network to ∼ 10 Mb

AlexNet
∼ 60 M parameter a 4 byte ⇒ 240 Mb model size

VGG-16
∼ 130 M parameter a 4 byte ⇒ 520 Mb model size

Goal
Need to achieve compression ratio ≥ 20

DeepLearning on FPGAs 28



Deep Learning on FPGAs

Design Goal Use on-chip memory whenever possible

Plan
Reduce size of network to ∼ 10 Mb

AlexNet
∼ 60 M parameter a 4 byte ⇒ 240 Mb model size

VGG-16
∼ 130 M parameter a 4 byte ⇒ 520 Mb model size

Goal
Need to achieve compression ratio ≥ 20

DeepLearning on FPGAs 28



Deep Learning on FPGAs

Design Goal Use on-chip memory whenever possible

Plan
Reduce size of network to ∼ 10 Mb

AlexNet
∼ 60 M parameter a 4 byte ⇒ 240 Mb model size

VGG-16
∼ 130 M parameter a 4 byte ⇒ 520 Mb model size

Goal
Need to achieve compression ratio ≥ 20

DeepLearning on FPGAs 28



Solution: Use smaller data types (1)

Gupta et al. 2015, Han et. al 2016, Gysel et. al 2016 . . .

Reduction 32→ 16 bit nearly no performance difference in training

Reduction 32→ 8 bit nearly no performance difference in inference

Reduction 32→ 2 bit also possible, but requires special training

Thus

Compression factor 2− 4 for free using fixed point

DeepLearning on FPGAs 29



Solution: Use smaller data types (1)

Gupta et al. 2015, Han et. al 2016, Gysel et. al 2016 . . .

Reduction 32→ 16 bit nearly no performance difference in training

Reduction 32→ 8 bit nearly no performance difference in inference

Reduction 32→ 2 bit also possible, but requires special training

Thus

Compression factor 2− 4 for free using fixed point

DeepLearning on FPGAs 29



Solution: Use smaller data types (2)

Fixed point

Xfx =

Nt︷ ︸︸ ︷
X(1)X(0)︸ ︷︷ ︸

Nl

.X(−1)X(−2)X(−3)X(−4)︸ ︷︷ ︸
Nr

Implementation As scaled integer of size Nt, e.g. char for 8 bit

Fixed → float: Xfl =

Nl∑

i=0

X(i)2
i +

−Nr∑

i=−1

X(−i)2
−i

Float → fixed: Xfx = bXfl · 2Nrc

use shift operations!
2i = (1 << i)
2−i = (1 >> i)

Note In SDSoC there is a datatype ap fixed<Nl,Nr>

DeepLearning on FPGAs 30



Solution: Use smaller data types (2)

Fixed point

Xfx =

Nt︷ ︸︸ ︷
X(1)X(0)︸ ︷︷ ︸

Nl

.X(−1)X(−2)X(−3)X(−4)︸ ︷︷ ︸
Nr

Implementation As scaled integer of size Nt, e.g. char for 8 bit

Fixed → float: Xfl =

Nl∑

i=0

X(i)2
i +

−Nr∑

i=−1

X(−i)2
−i

Float → fixed: Xfx = bXfl · 2Nrc

use shift operations!
2i = (1 << i)
2−i = (1 >> i)

Note In SDSoC there is a datatype ap fixed<Nl,Nr>

DeepLearning on FPGAs 30



Solution: Use smaller data types (2)

Fixed point

Xfx =

Nt︷ ︸︸ ︷
X(1)X(0)︸ ︷︷ ︸

Nl

.X(−1)X(−2)X(−3)X(−4)︸ ︷︷ ︸
Nr

Implementation As scaled integer of size Nt, e.g. char for 8 bit

Fixed → float: Xfl =

Nl∑

i=0

X(i)2
i +

−Nr∑

i=−1

X(−i)2
−i

Float → fixed: Xfx = bXfl · 2Nrc

use shift operations!
2i = (1 << i)
2−i = (1 >> i)

Note In SDSoC there is a datatype ap fixed<Nl,Nr>
DeepLearning on FPGAs 30



Solution: Use smaller data types (3)

Addition/substraction No changes required

X
′′
fx = Xfx+X

′
fx = bXfl ·2Nrc+bX ′fl ·2Nrc = b(Xfl+X

′
fl) ·2Nrc

Multiplication/Division Correct scaling

Xfx ·X
′
fx = bXfl · 2Nrc · bX ′fl · 2Nrc = b(Xfl ·X

′
fl) · (2Nr · 2Nr)c

⇒ X
′′
fx = Xfx ·X

′
fx · 2−Nr

DeepLearning on FPGAs 31



Solution: Use smaller data types (3)

Addition/substraction No changes required

X
′′
fx = Xfx+X

′
fx = bXfl ·2Nrc+bX ′fl ·2Nrc = b(Xfl+X

′
fl) ·2Nrc

Multiplication/Division Correct scaling

Xfx ·X
′
fx = bXfl · 2Nrc · bX ′fl · 2Nrc = b(Xfl ·X

′
fl) · (2Nr · 2Nr)c

⇒ X
′′
fx = Xfx ·X

′
fx · 2−Nr

DeepLearning on FPGAs 31



Solution: Use smaller data types (4)

Caution For training

SGD requires unbiased estimate of gradient

Fixed point Xfx = bXfl · 2Nrc
Gradient estimate is biased towards smaller number

Gupta et al. 2015 Stochastic rounding

Xfx =

{
bXfl · 2Nrc with prob. p ∼ Xfl − bXflc
bXfl · 2Nr + 2−Nrc else

DeepLearning on FPGAs 32



Solution: Use smaller data types (4)

Caution For training

SGD requires unbiased estimate of gradient

Fixed point Xfx = bXfl · 2Nrc
Gradient estimate is biased towards smaller number

Gupta et al. 2015 Stochastic rounding

Xfx =

{
bXfl · 2Nrc with prob. p ∼ Xfl − bXflc
bXfl · 2Nr + 2−Nrc else

DeepLearning on FPGAs 32



Solution: Use smaller data types (4)

Caution For training

SGD requires unbiased estimate of gradient

Fixed point Xfx = bXfl · 2Nrc
Gradient estimate is biased towards smaller number

Gupta et al. 2015 Stochastic rounding

Xfx =

{
bXfl · 2Nrc with prob. p ∼ Xfl − bXflc
bXfl · 2Nr + 2−Nrc else

DeepLearning on FPGAs 32



Sidenote: The extreme case

Courbariaux et al. 2015, Hubara et al. 2016
Use binary / ternary weights during forward pass

Rastegari et al. 2016 XNOR-Net
Utilize binary operations for forward pass

But Train network using (quantized) real values

So far No binary SGD

What about model inference?

DeepLearning on FPGAs 33



Sidenote: The extreme case

Courbariaux et al. 2015, Hubara et al. 2016
Use binary / ternary weights during forward pass

Rastegari et al. 2016 XNOR-Net
Utilize binary operations for forward pass

But Train network using (quantized) real values

So far No binary SGD

What about model inference?

DeepLearning on FPGAs 33



Sidenote: The extreme case

Courbariaux et al. 2015, Hubara et al. 2016
Use binary / ternary weights during forward pass

Rastegari et al. 2016 XNOR-Net
Utilize binary operations for forward pass

But Train network using (quantized) real values

So far No binary SGD

What about model inference?

DeepLearning on FPGAs 33



Sidenote: The extreme case

Courbariaux et al. 2015, Hubara et al. 2016
Use binary / ternary weights during forward pass

Rastegari et al. 2016 XNOR-Net
Utilize binary operations for forward pass

But Train network using (quantized) real values

So far No binary SGD

What about model inference?

DeepLearning on FPGAs 33



For inference: Prune Connections

Han et al. 2015 Prune connections and retrain weights

Train connections

Prune connections

Retrain connections

Train network as always

Delete all connections with wli,j ≤ τ l

Retrain network with deleted
connections

Note Delete neurons if not connected anymore

Results 9− 13x compression in overall size + no loss in accuracy

But Extremely slow + threshold τ l not clear

DeepLearning on FPGAs 34



For inference: Prune Connections

Han et al. 2015 Prune connections and retrain weights

Train connections

Prune connections

Retrain connections

Train network as always

Delete all connections with wli,j ≤ τ l

Retrain network with deleted
connections

Note Delete neurons if not connected anymore

Results 9− 13x compression in overall size + no loss in accuracy

But Extremely slow + threshold τ l not clear

DeepLearning on FPGAs 34



For inference: Distribution of weights

Han et al 2015 Weights are somewhat Gaussian distributed

weights

count

−0.02 0.02

In red Fixed point quantization
In green Dynamic quantization

DeepLearning on FPGAs 35



For inference: Distribution of weights

Han et al 2015 Weights are somewhat Gaussian distributed

weights

count

−0.02 0.02

In red Fixed point quantization
In green Dynamic quantization

DeepLearning on FPGAs 35



For inference: Clustering

Han et al 2015 / Han et al 2016 Cluster weights after training

Cluster weights

Generate Code Book

Quantize weights

Retrain Code book

Cluster weights

Extract centroids

Assign indexing scheme

Update shared weights jointly

Results
∼ 20x compression in overall size

DeepLearning on FPGAs 36



For inference: Clustering

Han et al 2015 / Han et al 2016 Cluster weights after training

Cluster weights

Generate Code Book

Quantize weights

Retrain Code book

Cluster weights

Extract centroids

Assign indexing scheme

Update shared weights jointly

Results
∼ 20x compression in overall size

DeepLearning on FPGAs 36



Sidenote: Clustering

Goal: Find K “clusters” c1, . . . , cK in data x1, x2, . . . , xN ∈ R
Mathematically: argminc1,...,cK

∑K
k=1

∑N
i=1(xi − ck)2

Idea Iterative algorithm

1: for i = 1, 2, ...,K do
2: c[i] = random without replacement(x1, ..., xN )
3: while ERROR do
4: for i = 1, 2, ...,K do
5: cnt[i] = 0; tmp[i] = 0
6: for i = 1, 2, ..., N do
7: m = argmink=1,...,K{(x[i]− c[k])2}
8: cnt[m] = cnt[m] + 1; tmp[m] = tmp[m] + x[i]

Note: Same framework as SGD

DeepLearning on FPGAs 37



For inference: Distribution of clustered weights

Han et al 2016 Clustering changes weight distribution

weights

count

−0.02 0.02
weights

count

−0.02 0.02

Idea
Use huffman encoding to further reduce size

Results Additional ∼ 10x compression

DeepLearning on FPGAs 38



For inference: Distribution of clustered weights

Han et al 2016 Clustering changes weight distribution

weights

count

−0.02 0.02
weights

count

−0.02 0.02

Idea
Use huffman encoding to further reduce size

Results Additional ∼ 10x compression

DeepLearning on FPGAs 38



For inference: Combining all approaches

Han et al 2016 Combining all three approaches

35− 49x compression ratio

3− 4x speed-up

3− 7x less energy

No loss in accuracy

But Slow, due to post-processing

Nowlan and Hinton 1992 Clustering during backpropagation
Seems to work, but also extremely slow

So far Not been done with todays hardware (?)

DeepLearning on FPGAs 39



For inference: Combining all approaches

Han et al 2016 Combining all three approaches

35− 49x compression ratio

3− 4x speed-up

3− 7x less energy

No loss in accuracy

But Slow, due to post-processing

Nowlan and Hinton 1992 Clustering during backpropagation
Seems to work, but also extremely slow

So far Not been done with todays hardware (?)

DeepLearning on FPGAs 39



Deep Learning on FPGAs

Goal

Need to achieve compression ratio ≥ 20

So far

Compression ratio 2− 4 during training
Compression ratio 35− 49 after training

DeepLearning on FPGAs 40



Solution: Use different NN structure

Fully Connected Layer needs a lot of parameters

LeCun 1998
28× 28→ 300→ 10 = 238200 parameters

Observation
8bit quantization gives 28 = 256 different weights

Thus
∼ 930 weights will be the same, if evenly distributed

Chen et al. 2015 Hashing trick
Randomly group weights together
2− 4x compression without performance loss

DeepLearning on FPGAs 41



Solution: Use different NN structure

Fully Connected Layer needs a lot of parameters

LeCun 1998
28× 28→ 300→ 10 = 238200 parameters

Observation
8bit quantization gives 28 = 256 different weights

Thus
∼ 930 weights will be the same, if evenly distributed

Chen et al. 2015 Hashing trick
Randomly group weights together
2− 4x compression without performance loss

DeepLearning on FPGAs 41



Solution: Use different NN structure

Fully Connected Layer needs a lot of parameters

LeCun 1998
28× 28→ 300→ 10 = 238200 parameters

Observation
8bit quantization gives 28 = 256 different weights

Thus
∼ 930 weights will be the same, if evenly distributed

Chen et al. 2015 Hashing trick
Randomly group weights together
2− 4x compression without performance loss

DeepLearning on FPGAs 41



Solution: Use different NN structure (2)

Recall

δ
(l−1)
j =

∂h(y
(l−1)
i )

∂y
(l−1)
i

M(l)∑

k=1

δ
(l)
k w

(l)
j,k

For CPUs Use hash function h

δ
(l−1)
j =

∂h(y
(l−1)
i )

∂y
(l−1)
i

M(l)∑

k=1

δ
(l)
k w

(l)
φ(j,k)

For FPGAs

Compute hashing once offline + hard-code memory
Hash function φ Fast and easy, e.g. xxHash

DeepLearning on FPGAs 42



Solution: Use different NN structure (2)

Recall

δ
(l−1)
j =

∂h(y
(l−1)
i )

∂y
(l−1)
i

M(l)∑

k=1

δ
(l)
k w

(l)
j,k

For CPUs Use hash function h

δ
(l−1)
j =

∂h(y
(l−1)
i )

∂y
(l−1)
i

M(l)∑

k=1

δ
(l)
k w

(l)
φ(j,k)

For FPGAs

Compute hashing once offline + hard-code memory
Hash function φ Fast and easy, e.g. xxHash

DeepLearning on FPGAs 42



Solution: Use different NN structure (2)

Recall

δ
(l−1)
j =

∂h(y
(l−1)
i )

∂y
(l−1)
i

M(l)∑

k=1

δ
(l)
k w

(l)
j,k

For CPUs Use hash function h

δ
(l−1)
j =

∂h(y
(l−1)
i )

∂y
(l−1)
i

M(l)∑

k=1

δ
(l)
k w

(l)
φ(j,k)

For FPGAs

Compute hashing once offline + hard-code memory
Hash function φ Fast and easy, e.g. xxHash

DeepLearning on FPGAs 42



Deep Learning on FPGAs

Design Goal Fine-tune implementation whenever possible

Jouppi et al. 2016 TPU mostly built from systolic arrays

Idea
Use basic processing elements (PE)
Heavily pipeline computation in two dimensions

Then
Local communication
Synchronization by design
High throughput

DeepLearning on FPGAs 43



Deep Learning on FPGAs

Design Goal Fine-tune implementation whenever possible

Jouppi et al. 2016 TPU mostly built from systolic arrays

Idea
Use basic processing elements (PE)
Heavily pipeline computation in two dimensions

Then
Local communication
Synchronization by design
High throughput

DeepLearning on FPGAs 43



Deep Learning on FPGAs

Design Goal Fine-tune implementation whenever possible

Jouppi et al. 2016 TPU mostly built from systolic arrays

Idea
Use basic processing elements (PE)
Heavily pipeline computation in two dimensions

Then
Local communication
Synchronization by design
High throughput

DeepLearning on FPGAs 43



Deep Learning on FPGAs

Design Goal Fine-tune implementation whenever possible

Jouppi et al. 2016 TPU mostly built from systolic arrays

Idea
Use basic processing elements (PE)
Heavily pipeline computation in two dimensions

Then
Local communication
Synchronization by design
High throughput

DeepLearning on FPGAs 43



Solution Systolic arrays

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

x0 • • •

x1 • •

x2 •

x3

∑
iw3i · xi

∑
iw2i · xi

∑
iw1i · xi

∑
iw0i · xi

•

+

w

DeepLearning on FPGAs 44



Summary

Important concepts:

Moore’s law will expire around 2020

FPGAs are programmable hardware circuits

FPGAs work well with parallelism and custom data ranges

Use a combination of CPU and FPGA

HLS helps us to program FPGAs in a timely matter

Loop unrolling / Pipelining are two possible optimizations

Reduce communication between CPU and FPGA

Use fixed floating point operations if possible

DeepLearning on FPGAs 45



Homework (mandatory!!)

Implement backpropagation in C/C++ for the following network:

Input: 784 (MNIST)

Hidden: 300, ReLu activation

Output: 10, sigmoid, MSE

Important 1: You will also need a CSV reader in C/C++

Important 2: Statically allocate all the memory needed - no
malloc/new

Note: Expected accuracy is around 92%
This is mandatory: We will put parts of this network on the
FPGA next session!

DeepLearning on FPGAs 46



Homework (also mandatory!!)

What are your projects going to be? It should include

preprocessing of data

neural network architecture

model training

FPGA usage

Important: You are free to choose your focus

Example 1: Focus on fast implementation for fully connected /
convolution on FPGA. Tests mainly on MNIST

Example 2: Focus on Cats-Vs-Dogs data set. Use existing
framework and do a lot of pre-processing / model training

Example 3: Focus on integration of FPGA. Use pre-trained model
and compute inference on FPGA

Please: Ask me for help / advice!

DeepLearning on FPGAs 47



Homework (also mandatory!!)

What are your projects going to be? It should include

preprocessing of data

neural network architecture

model training

FPGA usage

Important: You are free to choose your focus

Example 1: Focus on fast implementation for fully connected /
convolution on FPGA. Tests mainly on MNIST

Example 2: Focus on Cats-Vs-Dogs data set. Use existing
framework and do a lot of pre-processing / model training

Example 3: Focus on integration of FPGA. Use pre-trained model
and compute inference on FPGA

Please: Ask me for help / advice!
DeepLearning on FPGAs 47


	Recap

