DeepLearning on FPGAs Introduction to FPGAs Sebastian Buschjäger Technische Universität Dortmund - Fakultät Informatik - Lehrstuhl 8 October 24, 2017 $\begin{array}{l} \textbf{Observation 1} \ \, \textbf{Even smaller images need a lot of neurons} \\ \textbf{Our approach Discrete convolution} \end{array}$ $$k_c = \sum_{i=1}^r w_i \cdot c_i = \vec{w} * \vec{c}$$ | 170 | 20 | 153 | 11 | |-----|-----|-----|-----| | 122 | 39 | 70 | 200 | | 180 | 80 | 10 | 120 | | 20 | 120 | 45 | 140 | image kernel / weights / filter $\begin{array}{c} \textbf{Observation 1} \ \, \textbf{Even smaller images need a lot of neurons} \\ \textbf{Our approach Discrete convolution} \end{array}$ $$k_c = \sum_{i=1}^r w_i \cdot c_i = \vec{w} * \vec{c}$$ | 170 | 20 | 153 | 11 | |-----|-----|-----|-----| | 122 | 39 | 70 | 200 | | 180 | 80 | 10 | 120 | | 20 | 120 | 45 | 140 | image $$180 \cdot 1 - 80 \cdot 0.5 - 20 \cdot 0.5 + 120 \cdot 1 = 250$$ kernel / weights / filter $\begin{array}{c} \textbf{Observation 1} \ \, \textbf{Even smaller images need a lot of neurons} \\ \textbf{Our approach Discrete convolution} \end{array}$ $$k_c = \sum_{i=1}^r w_i \cdot c_i = \vec{w} * \vec{c}$$ | 170 | 20 | 153 | 11 | |-----|-----|-----|-----| | 122 | 39 | 70 | 200 | | 180 | 80 | 10 | 120 | | 20 | 120 | 45 | 140 | image $10 \cdot 1 - 120 \cdot 0.5 - 45 \cdot 0.5 + 140 \cdot 1 = 67$ kernel / weights / filter $\begin{array}{l} \textbf{Observation 1} \ \, \textbf{Even smaller images need a lot of neurons} \\ \textbf{Our approach Discrete convolution} \end{array}$ $$k_c = \sum_{i=1}^r w_i \cdot c_i = \vec{w} * \vec{c}$$ | 170 | 20 | 153 | 11 | |-----|-----|-----|-----| | 122 | 39 | 70 | 200 | | 180 | 80 | 10 | 120 | | 20 | 120 | 45 | 140 | $$* \begin{array}{c|c} 1 & -0.5 \\ \hline -0.5 & 1 \end{array} = \begin{array}{c|c} 138 \\ \hline 250 & 67 \end{array}$$ $$170 \cdot 1 - 20 \cdot 0.5 - 122 \cdot 0.5 + 39 \cdot 1 = 138$$ kernel / weights / filter $\begin{array}{c} \textbf{Observation 1} \ \, \textbf{Even smaller images need a lot of neurons} \\ \textbf{Our approach Discrete convolution} \end{array}$ $$k_c = \sum_{i=1}^r w_i \cdot c_i = \vec{w} * \vec{c}$$ | 170 | 20 | 153 | 11 | |-----|-----|-----|-----| | 122 | 39 | 70 | 200 | | 180 | 80 | 10 | 120 | | 20 | 120 | 45 | 140 | image * $$\begin{array}{c|cccc} 1 & -0.5 \\ -0.5 & 1 \end{array}$$ 138 255250 67 $$153 \cdot 1 - 11 \cdot 0.5 - 70 \cdot 0.5 + 200 \cdot 1 = 255$$ kernel / weights / filter # Recap: CNNs and weight sharing #### Mathematically: ## Recap: Backpropagation for CNNs #### **Gradient step:** $$\begin{array}{lcl} w_{i,j}^{(l)} & = & w_{i,j}^{(l)} - \alpha \cdot \delta^{(l)} * rot 180(f)^{(l-1)} f_{i,j}^{(l-1)} \\ b_j^{(l)} & = & b_j^{(l)} - \alpha \cdot \delta_j^{(l)} \end{array}$$ #### Recursion: $$\delta^{(l+1)} = \delta^{(l)} * rot180(w^{(l+1)}) \cdot \frac{\partial h(y_{i,j}^l)}{\partial h(y_{i,j}^l)}$$ ## Recap: Backpropagation for CNNs #### **Gradient step:** $$\begin{array}{lcl} w_{i,j}^{(l)} & = & w_{i,j}^{(l)} - \alpha \cdot \delta^{(l)} * rot180(f)^{(l-1)} f_{i,j}^{(l-1)} \\ b_j^{(l)} & = & b_j^{(l)} - \alpha \cdot \delta_j^{(l)} \end{array}$$ #### Recursion: Hardware: Current trends **Moore's law:** The number of transistors on a chip doubles every 12-24 month \Rightarrow We can double the speed roughly every 2 years ¹Intel predicts 5nm transistors to be available around 2020. #### Hardware: Current trends **Moore's law:** The number of transistors on a chip doubles every 12-24 month \Rightarrow We can double the speed roughly every 2 years Fact 1: Engineering is currently producing 11 - 16nm transistors¹ Side-Note: A 4nm transistor can be built from only 7 atoms! Fact 2: The smaller transistors get, the more quantum effects are happening. Moore's law is predicted to expire with 5nm transistors ¹Intel predicts 5nm transistors to be available around 2020. #### Hardware: Current trends **Moore's law:** The number of transistors on a chip doubles every 12-24 month \Rightarrow We can double the speed roughly every 2 years Fact 1: Engineering is currently producing 11-16nm transistors 1 Side-Note: A 4nm transistor can be built from only 7 atoms! Fact 2: The smaller transistors get, the more quantum effects are happening. Moore's law is predicted to expire with 5nm transistors #### How to deal with this problem - Multi/Many core systems - Add specialized components in CPU - Use dedicated hardware for specific tasks ¹Intel predicts 5nm transistors to be available around 2020. #### Hardware Overview #### Fact: speed: fastest energy: $\sim \mu W$ application specific costs: expensive #### Fact: speed: fast energy: \sim W general purpose costs: cheap #### Hardware Overview #### Fact: - speed: fastest - energy: $\sim \mu W$ - application specific - costs: expensive #### Hope: - speed: faster - energy: ~ mW - general + specific - costs: cheap #### Fact: - speed: fast - energy: \sim W - general purpose - costs: cheap #### FPGA: How does it work? - chip layout 2D grid - configurable connections between blocks - configurable logic blocks (CL) - input/output blocks (IO) - hard-wired on boards with standard interface - programmed and flashed with external PC DeepLearning on FPGAs 9 # FPGA: Signal Routing DeepLearning on FPGAs ## FPGA: Configurable Logic Block ■ Inherent parallelism: We can perform computations in real parallel in any level of granularity - Inherent parallelism: We can perform computations in real parallel in any level of granularity - Large on-chip memory: Modern CPUs offer caches in the range of ~ 8 Mb. Today's largest FPGA chips offer on-chip memory in the range of ~ 64 Mb - Inherent parallelism: We can perform computations in real parallel in any level of granularity - Large on-chip memory: Modern CPUs offer caches in the range of ~ 8 Mb. Today's largest FPGA chips offer on-chip memory in the range of ~ 64 Mb - **Arbitrary word sizes:** Modern CPUs and GPUs are built and optimized for specific word sizes, e.g. 64 bit. In FPGAs, the word size is arbitrary and can fit the problem given - Inherent parallelism: We can perform computations in real parallel in any level of granularity - Large on-chip memory: Modern CPUs offer caches in the range of ~ 8 Mb. Today's largest FPGA chips offer on-chip memory in the range of ~ 64 Mb - **Arbitrary word sizes:** Modern CPUs and GPUs are built and optimized for specific word sizes, e.g. 64 bit. In FPGAs, the word size is arbitrary and can fit the problem given - Large IO capabilities: Modern CPUs and GPUs have to use PCIe and direct memory access (DMA) for data IO. FPGAs are free to use what's necessary. ■ Slow clock rate: CPUs / GPUs are clocked with $\sim 2-3$ GHz, FPGAs with ~ 200 Mhz - Slow clock rate: CPUs / GPUs are clocked with $\sim 2-3$ GHz, FPGAs with ~ 200 Mhz - **No abstractions:** CPUs / GPUs offer a stack and a heap with data addressing etc. FPGAs just offer raw hardware - Slow clock rate: CPUs / GPUs are clocked with $\sim 2-3$ GHz, FPGAs with ~ 200 Mhz - **No abstractions:** CPUs / GPUs offer a stack and a heap with data addressing etc. FPGAs just offer raw hardware - No optimizations: CPUs / GPUs offer a well developed tool-chain support. Additionally, modern CPUs/GPUs often offer specialized hardware instructions **Note 1:** High-end FPGAs offer clock rates around 800 Mhz **Note 2:** High-end FPGAs also offer specialized hardware blocks, e.g. digital processing units or floating point units - Slow clock rate: CPUs / GPUs are clocked with $\sim 2-3$ GHz, FPGAs with ~ 200 Mhz - **No abstractions:** CPUs / GPUs offer a stack and a heap with data addressing etc. FPGAs just offer raw hardware - No optimizations: CPUs / GPUs offer a well developed tool-chain support. Additionally, modern CPUs/GPUs often offer specialized hardware instructions **Note 1:** High-end FPGAs offer clock rates around 800 Mhz **Note 2:** High-end FPGAs also offer specialized hardware blocks, e.g. digital processing units or floating point units **Note 3:** Tool support for FPGAs are growing. The so-called 3rd wave of tools finally enables FPGAs for the mass-market # FPGA: Workflow HDL programming synthesis place & route FPGA high level synthesis SDK programming #### Hardware Description Languages (HDL): - describe hardware on transistor and gate level - modelling real concurrency - modelling signal flow & timings - low level bit operations - high level operations like sums, products, ... - verified using simulator #### Hardware Description Languages (HDL): - describe hardware on transistor and gate level - modelling real concurrency - modelling signal flow & timings - low level bit operations - high level operations like sums, products, ... - verified using simulator **Note:** HDLs are used by hardware designers. HDLs are extremely low-level, but allow ultimate control over your design **But:** HDL designs need time and care \rightarrow We focus on HLS Basic idea: Automatically translate high level code into HDL - Automate tedious work - Compile code specifically for target device - Lets you explore design space effectively - Output should be reviewed - Code must be changed for HLS tool - Only works on subset of high level language Basic idea: Automatically translate high level code into HDL - Automate tedious work - Compile code specifically for target device - Lets you explore design space effectively - Output should be reviewed - Code must be changed for HLS tool - Only works on subset of high level language **Note:** HLS lets you describe your hardware in C-Code and the HLS tool will try to guess what you code meant and put that on the FPGA (more later) Synthesis: Calculate CL configurations - → **So far:** HDL contains abstractions, e.g. summation - → **Thus:** Compile these to a gate description, e.g. half/full-adder - \Rightarrow The netlist contains the functionality of all units of the design #### Synthesis: Calculate CL configurations - → **So far:** HDL contains abstractions, e.g. summation - \rightarrow **Thus:** Compile these to a gate description, e.g. half/full-adder - \Rightarrow The netlist contains the functionality of all units of the design #### Place & Route: Calculate signal routing - →So far: We have netlist with all functional units of our design - \Rightarrow Calculate, which CL implements which functionality and how they are connected **Important:** Synthesis and place & route may fail! **Important:** Synthesis and place & route may fail! **Observation 1:** HDL and HLS allow us to express things, which are not existent in hardware, e.g. files **Observation 2:** Hardware is usually clocked. Place & route may fail to provide the necessary timings to achieve the given clock. **Important:** Synthesis and place & route may fail! **Observation 1:** HDL and HLS allow us to express things, which are not existent in hardware, e.g. files **Observation 2:** Hardware is usually clocked. Place & route may fail to provide the necessary timings to achieve the given clock. **Note 1:** We aim for a clock around 125 - 150 Mhz. **Note 2:** Synthesis and place & route perform a lot of optimizations. Thus this phase is slow (minutes - hours) **Observation 1:** We can use IP from other programmers¹ ¹E.g. http://opencores.com/ **Observation 1:** We can use IP from other programmers¹ #### **Observation 2:** There are so-called soft processors - Small processors with own ISA - Mostly configurable in terms of Caches, Pipelining etc. - Different optimizations for energy or throughput available - Usually programmed in C-like language with own compiler ¹E.g. http://opencores.com/ **So:** For what do be use FPGAs? - CPUs are optimized towards latency - → Execute a single operation as fast as possible - GPUs are optimized towards throughput - \rightarrow Process as much data a as fast as possible - FPGAs are optimized towards? **So:** For what do be use FPGAs? - CPUs are optimized towards latency - \rightarrow Execute a single operation as fast as possible - GPUs are optimized towards throughput - → Process as much data a as fast as possible - FPGAs are optimized towards? Fact: CPU and GPU designers are smart people! \Rightarrow It is though to beat a CPU / GPU only with an FPGA **So:** For what do be use FPGAs? - CPUs are optimized towards latency - → Execute a single operation as fast as possible - GPUs are optimized towards throughput - → Process as much data a as fast as possible - FPGAs are optimized towards? Fact: CPU and GPU designers are smart people! \Rightarrow It is though to beat a CPU / GPU only with an FPGA **Rule-of-thumb:** CPU is good for control flow FPGAs / GPUs are good for number crunching Thus: Combine FPGAs with CPUs **Either:** As PCle cards in desktop / server systems - Needs a custom written driver for PCIe - Usually needs special licenses on FPGA chip or own PCle protocol implementation - Requires full desktop system **Either:** As PCle cards in desktop / server systems - Needs a custom written driver for PCIe - Usually needs special licenses on FPGA chip or own PCle protocol implementation - Requires full desktop system Or: fully integrated on development boards - On-board connections are known, thus 1 driver needed - Does not require full desktop system ⇒ Less energy **Either:** As PCle cards in desktop / server systems - Needs a custom written driver for PCIe - Usually needs special licenses on FPGA chip or own PCle protocol implementation - Requires full desktop system Or: fully integrated on development boards - On-board connections are known, thus 1 driver needed - Does not require full desktop system ⇒ Less energy Our focus: Embedded boards with FPGA Co-Processors Board: Xilinx ZedBoard ARM Cortex-A9 Dual Core CPU with 666 Mhz ■ RAM: 512 Mb DDR RAM ■ **Memory:** 512 Kb Cache FPGA: Xilinx Artix-7 Z-7020 **LUT:** 53200 ■ **CLB**: 83000 ■ Block-Ram: 4.9 Mb ■ **DSP**: 220 Board: Xilinx ZedBoard ARM Cortex-A9 Dual Core CPU with 666 Mhz ■ RAM: 512 Mb DDR RAM ■ **Memory:** 512 Kb Cache FPGA: Xilinx Artix-7 Z-7020 **LUT:** 53200 ■ CLB: 83000 ■ Block-Ram: 4.9 Mb ■ **DSP**: 220 Idea: Run full blown Linux on CPU and connect with FPGA **Thus:** Easy software development for "glue" code + fast energy and efficient computations **Board:** Xilinx ZedBoard ARM Cortex-A9 Dual Core CPU with 666 Mhz ■ RAM: 512 Mb DDR RAM ■ **Memory:** 512 Kb Cache FPGA: Xilinx Artix-7 Z-7020 ■ LUT: 53200 ■ CLB: 83000 ■ Block-Ram: 4.9 Mb ■ **DSP:** 220 Idea: Run full blown Linux on CPU and connect with FPGA **Thus:** Easy software development for "glue" code + fast energy and efficient computations **CPU:** Programmed in C FPGA: Programmed in C or VHDL/Verilog Board: Xilinx ZedBoard ARM Cortex-A9 Dual Core CPU with 666 Mhz ■ RAM: 512 Mb DDR RAM Memory: 512 Kb Cache FPGA: Xilinx Artix-7 Z-7020 ■ LUT: 53200 ■ CLB: 83000 ■ Block-Ram: 4.9 Mb ■ **DSP:** 220 Idea: Run full blown Linux on CPU and connect with FPGA **Thus:** Easy software development for "glue" code + fast energy and efficient computations **CPU:** Programmed in C FPGA: Programmed in C or VHDL/Verilog Question: How do we combine both? # Software driven System on a Chip development (SDSoC) Note: FPGA interface might change Thus: Linux kernel driver needed for every new hardware block \rightarrow Writing Linux kernel drivers is a though task # Software driven System on a Chip development (SDSoC) Note: FPGA interface might change Thus: Linux kernel driver needed for every new hardware block \rightarrow Writing Linux kernel drivers is a though task Thus: We use software for that: Xilinx SDSoC - Standard eclipse GUI for C/C++ programming - Standard gcc ARM compiler for C/C++ code - HLS automatically compiles C/C++ code to HDL - SDSoC generates a kernel driver based on the HLS' output # Software driven System on a Chip development (SDSoC) Note: FPGA interface might change Thus: Linux kernel driver needed for every new hardware block → Writing Linux kernel drivers is a though task Thus: We use software for that: Xilinx SDSoC - Standard eclipse GUI for C/C++ programming - Standard gcc ARM compiler for C/C++ code - HLS automatically compiles C/C++ code to HDL - SDSoC generates a kernel driver based on the HLS' output **In the end:** We get a bootable Linux image for sd card with integrated hardware accelerator #### **AXI-Interface** Fact 1: The FPGA can support any hardware interface we desire Fact 2: The ARMs hardware interface is fixed \Rightarrow The ARM and the FPGA are connected using the AXI interface #### **AXI-Interface** **Fact 1:** The FPGA can support any hardware interface we desire **Fact 2:** The ARMs hardware interface is fixed \Rightarrow The ARM and the FPGA are connected using the AXI interface AXI is part of the AMBA protocol stack. It specifies the way how system-on-a-chip components (CPU, RAM, FPGA...) should talk to each other. There are 3 variants: - AXI-Lite: easy, simple communication - AXI-Stream: high throughput in streaming settings - AXI: high speed, low latency #### **AXI-Interface** **Fact 1:** The FPGA can support any hardware interface we desire **Fact 2:** The ARMs hardware interface is fixed \Rightarrow The ARM and the FPGA are connected using the AXI interface AXI is part of the AMBA protocol stack. It specifies the way how system-on-a-chip components (CPU, RAM, FPGA...) should talk to each other. There are 3 variants: - AXI-Lite: easy, simple communication - AXI-Stream: high throughput in streaming settings - AXI: high speed, low latency Note: HLS generates the desired interface for us # High Level Synthesis: Interface generation ``` \#define PRAGMA_SUB(x) _Pragma (\#x) #define DO_PRAGMA(x) PRAGMA_SUB(x) float diff(float const pX1[dim], float const pX2[dim]) const { DO_PRAGMA(HLS INTERFACE s_axilite port=pX1 depth=dim); DO_PRAGMA(HLS_INTERFACE_s_axilite_port=pX2_depth=dim_): 6 #pragma HLS INTERFACE s_axilite port=return 8 float sum = 0: 9 for (unsigned int i = 0; i < dim; ++i) { 10 sum += (pX1[i]-pX2[i])*(pX1[i]-pX2[i]); 11 12 13 return sum; ``` Note 1: In standard C "bool predict(float const pX[dim])" is the same as "bool predict(float const *pX)", but HLS explicitly needs to know the size! # High Level Synthesis: Interface generation ``` \#define PRAGMA_SUB(x) _Pragma (\#x) #define DO_PRAGMA(x) PRAGMA_SUB(x) float diff(float const pX1[dim], float const pX2[dim]) const { DO_PRAGMA(HLS INTERFACE s_axilite port=pX1 depth=dim); DO_PRAGMA(HLS_INTERFACE_s_axilite_port=pX2_depth=dim_): 6 #pragma HLS INTERFACE s_axilite port=return 8 float sum = 0: 9 for (unsigned int i = 0; i < dim; ++i) { 10 sum += (pX1[i]-pX2[i])*(pX1[i]-pX2[i]); 11 12 13 return sum; ``` Note 1: In standard C "bool predict(float const pX[dim])" is the same as "bool predict(float const *pX)", but HLS explicitly needs to know the size! Note 2: We use a special pragma if we need to use parameters # High Level Synthesis: Interface generation ``` \#define PRAGMA_SUB(x) _Pragma (\#x) #define DO_PRAGMA(x) PRAGMA_SUB(x) float diff(float const pX1[dim], float const pX2[dim]) const { DO_PRAGMA(HLS INTERFACE s_axilite port=pX1 depth=dim); DO_PRAGMA(HLS_INTERFACE_s_axilite_port=pX2_depth=dim_): 6 #pragma HLS INTERFACE s_axilite port=return 8 float sum = 0: 9 for (unsigned int i = 0; i < dim; ++i) { 10 sum += (pX1[i]-pX2[i])*(pX1[i]-pX2[i]); 11 12 13 return sum; ``` Note 1: In standard C "bool predict(float const pX[dim])" is the same as "bool predict(float const *pX)", but HLS explicitly needs to know the size! **Note 2:** We use a special pragma if we need to use parameters Note 3: s_axilite can be replaced by axis for axi-stream # Deep Learning: Some considerations Fact 1: DNNs have a lot of parameters Fact 2: Many SGD steps are required to get reasonable results # Deep Learning: Some considerations Fact 1: DNNs have a lot of parameters Fact 2: Many SGD steps are required to get reasonable results - We need a lot of data - We need to learn a lot of parameters - We need to perform many SGD steps until convergence # Deep Learning: Some considerations Fact 1: DNNs have a lot of parameters Fact 2: Many SGD steps are required to get reasonable results - We need a lot of data - We need to learn a lot of parameters - We need to perform many SGD steps until convergence **Additional:** We want to use Deep Learning in embedded context's, such as car, robots, etc. **Important:** Model inference is different from model training \rightarrow Optimizations are task specific! # Deep Learning: A hardware perspective Clear: DeepLearning greatly benefits from new and fast hardware Note: This is well known. Many publications date back decades ago about specialized Neural-Network hardware DeepLearning on FPGAs ## Deep Learning: A hardware perspective Clear: DeepLearning greatly benefits from new and fast hardware Note: This is well known. Many publications date back decades ago about specialized Neural-Network hardware - **Until** 2010: Libs for NN mostly CPU based. Research for dedicated hardware available. - From 2010: GPUs are widely available in mass-market. NN libs with GPUs backends become popular. ## Deep Learning: A hardware perspective Clear: DeepLearning greatly benefits from new and fast hardware Note: This is well known. Many publications date back decades ago about specialized Neural-Network hardware - **Until** 2010: Libs for NN mostly CPU based. Research for dedicated hardware available. - From 2010: GPUs are widely available in mass-market. NN libs with GPUs backends become popular. - Upcoming: More specialized hardware is being used - Januar 2016: Nvidias Drive PX2 for autonomous cars - June 2016: Googles Tensor Processing Unit (TPU) - May 2017: Googles Tensor Processing Unit 2.0 (TPU) **Currently:** GPUs are state-of-the art - Why use FPGAs? # Deep Learning: Better performance per Watt Ovtcharov et al. 2015 256×256 images **GPU** 376 images / sec with 235 W $\Rightarrow 0.625$ J / image **FPGA** 134 images / sec with 25 W $\Rightarrow 0.1866$ J / image ## Deep Learning: Better performance per Watt Ovtcharov et al. 2015 256×256 images **GPU** 376 images / sec with 235 W $\Rightarrow 0.625$ J / image **FPGA** 134 images / sec with 25 W $\Rightarrow 0.1866$ J / image Qiu et al. 2016 482×415 images **GPU** 57.9 images / sec with 250 W \Rightarrow 4.31 J / image **FPGA** 4.45 images / sec with $9.3~\mathrm{W} \Rightarrow 2.08~\mathrm{J}$ / image ## Deep Learning: Better performance per Watt Ovtcharov et al. 2015 256×256 images **GPU** 376 images / sec with 235 W $\Rightarrow 0.625$ J / image **FPGA** 134 images / sec with 25 W $\Rightarrow 0.1866$ J / image **Qiu et al. 2016** 482×415 images **GPU** 57.9 images / sec with 250 W \Rightarrow 4.31 J / image **FPGA** 4.45 images / sec with $9.3~\mathrm{W} \Rightarrow 2.08~\mathrm{J}$ / image **Thus:** FPGAs may offer better performance per watt Question: How do we bring DNNs to FPGAs? Design Goal Use on-chip memory whenever possible Design Goal Use on-chip memory whenever possible #### Plan Reduce size of network to $\sim 10~\mathrm{Mb}$ #### **AlexNet** ~ 60 M parameter a 4 byte $\Rightarrow 240$ Mb model size ### VGG-16 ~ 130 M parameter a 4 byte $\Rightarrow 520$ Mb model size Design Goal Use on-chip memory whenever possible #### Plan Reduce size of network to $\sim 10~\mathrm{Mb}$ #### **AlexNet** ~ 60 M parameter a 4 byte $\Rightarrow 240$ Mb model size ### VGG-16 ~ 130 M parameter a 4 byte $\Rightarrow 520$ Mb model size ### Goal Need to achieve compression ratio ≥ 20 # Solution: Use smaller data types (1) Gupta et al. 2015, Han et. al 2016, Gysel et. al 2016 . . . Reduction $32 \to 16$ bit nearly no performance difference in training Reduction $32 \to 8$ bit nearly no performance difference in inference Reduction $32 \to 2$ bit also possible, but requires special training # Solution: Use smaller data types (1) Gupta et al. 2015, Han et. al 2016, Gysel et. al 2016 . . . Reduction $32 \rightarrow 16$ bit nearly no performance difference in training Reduction $32 \rightarrow 8$ bit nearly no performance difference in inference Reduction $32 \rightarrow 2$ bit also possible, but requires special training #### Thus Compression factor 2-4 for free using fixed point # Solution: Use smaller data types (2) ### Fixed point $$X_{fx} = \underbrace{X_{(1)}X_{(0)}}_{N_l} \cdot \underbrace{X_{(-1)}X_{(-2)}X_{(-3)}X_{(-4)}}_{N_r}$$ **Implementation** As scaled integer of size N_t , e.g. char for 8 bit # Solution: Use smaller data types (2) ### Fixed point $$X_{fx} = \underbrace{X_{(1)}X_{(0)}}_{N_l} \underbrace{X_{(-1)}X_{(-2)}X_{(-3)}X_{(-4)}}_{N_r}$$ **Implementation** As scaled integer of size N_t , e.g. char for 8 bit Fixed $$\rightarrow$$ float: $X_{fl} = \sum_{i=0}^{N_l} X_{(i)} 2^i + \sum_{i=-1}^{-N_r} X_{(-i)} 2^{-i}$ Float $$\rightarrow$$ fixed: $X_{fx} = \lfloor X_{fl} \cdot 2^{N_r} \rfloor$ # Solution: Use smaller data types (2) ### Fixed point $$X_{fx} = \underbrace{X_{(1)}X_{(0)}}_{N_l} \underbrace{X_{(-1)}X_{(-2)}X_{(-3)}X_{(-4)}}_{N_r}$$ **Implementation** As scaled integer of size N_t , e.g. char for 8 bit $$\mathsf{Fixed} \to \mathsf{float} \colon X_{fl} = \sum_{i=0}^{N_l} X_{(i)} 2^i + \sum_{i=-1}^{-N_r} X_{(-i)} 2^{-i}$$ Float $$\rightarrow$$ fixed: $X_{fx} = |X_{fl} \cdot 2^{N_r}|$ use shift operations! $$2^i = (1 << i)$$ $2^{-i} = (1 >> i)$ **Note** In SDSoC there is a datatype ap_fixed $< N_l$, $N_r >$ # Solution: Use smaller data types (3) ### Addition/substraction No changes required $$\boldsymbol{X}_{fx}^{''} = \boldsymbol{X}_{fx} + \boldsymbol{X}_{fx}^{'} = \lfloor \boldsymbol{X}_{fl} \cdot 2^{N_r} \rfloor + \lfloor \boldsymbol{X}_{fl}^{'} \cdot 2^{N_r} \rfloor = \lfloor (\boldsymbol{X}_{fl} + \boldsymbol{X}_{fl}^{'}) \cdot 2^{N_r} \rfloor$$ # Solution: Use smaller data types (3) ### Addition/substraction No changes required $$\boldsymbol{X}_{fx}^{''} = \boldsymbol{X}_{fx} + \boldsymbol{X}_{fx}^{'} = \lfloor \boldsymbol{X}_{fl} \cdot 2^{N_r} \rfloor + \lfloor \boldsymbol{X}_{fl}^{'} \cdot 2^{N_r} \rfloor = \lfloor (\boldsymbol{X}_{fl} + \boldsymbol{X}_{fl}^{'}) \cdot 2^{N_r} \rfloor$$ ### Multiplication/Division Correct scaling $$X_{fx} \cdot X'_{fx} = \lfloor X_{fl} \cdot 2^{N_r} \rfloor \cdot \lfloor X'_{fl} \cdot 2^{N_r} \rfloor = \lfloor (X_{fl} \cdot X'_{fl}) \cdot (2^{N_r} \cdot 2^{N_r}) \rfloor$$ $$\Rightarrow X''_{fx} = X_{fx} \cdot X'_{fx} \cdot 2^{-N_r}$$ Solution: Use smaller data types (4) **Caution** For training SGD requires unbiased estimate of gradient # Solution: Use smaller data types (4) Caution For training SGD requires unbiased estimate of gradient Fixed point $$X_{fx} = \lfloor X_{fl} \cdot 2^{N_r} \rfloor$$ Gradient estimate is biased towards smaller number # Solution: Use smaller data types (4) **Caution** For training SGD requires unbiased estimate of gradient Fixed point $$X_{fx} = \lfloor X_{fl} \cdot 2^{N_r} \rfloor$$ Gradient estimate is biased towards smaller number Gupta et al. 2015 Stochastic rounding $$X_{fx} = \begin{cases} \lfloor X_{fl} \cdot 2^{N_r} \rfloor & \text{with prob. p} \sim X_{fl} - \lfloor X_{fl} \rfloor \\ \lfloor X_{fl} \cdot 2^{N_r} + 2^{-N_r} \rfloor & \text{else} \end{cases}$$ Courbariaux et al. 2015, Hubara et al. 2016 Use binary / ternary weights during forward pass Rastegari et al. 2016 XNOR-Net Utilize binary operations for forward pass Courbariaux et al. 2015, Hubara et al. 2016 Use binary / ternary weights during forward pass Rastegari et al. 2016 XNOR-Net Utilize binary operations for forward pass But Train network using (quantized) real values Courbariaux et al. 2015, Hubara et al. 2016 Use binary / ternary weights during forward pass Rastegari et al. 2016 XNOR-Net Utilize binary operations for forward pass But Train network using (quantized) real values **So far** No binary SGD Courbariaux et al. 2015, Hubara et al. 2016 Use binary / ternary weights during forward pass Rastegari et al. 2016 XNOR-Net Utilize binary operations for forward pass But Train network using (quantized) real values **So far** No binary SGD What about model inference? ## For inference: Prune Connections ### Han et al. 2015 Prune connections and retrain weights Train network as always Delete all connections with $w_{i,j}^l \leq \tau^l$ Retrain network with deleted connections ### For inference: Prune Connections ### Han et al. 2015 Prune connections and retrain weights Train network as always Delete all connections with $w_{i,j}^l \leq \tau^l$ Retrain network with deleted connections Note Delete neurons if not connected anymore **Results** 9 - 13x compression in overall size + no loss in accuracy **But** Extremely slow + threshold τ^l not clear ## For inference: Distribution of weights Han et al 2015 Weights are somewhat Gaussian distributed ## For inference: Distribution of weights Han et al 2015 Weights are somewhat Gaussian distributed **In red** Fixed point quantization **In green** Dynamic quantization # For inference: Clustering ## Han et al 2015 / Han et al 2016 Cluster weights after training Cluster weights Extract centroids Assign indexing scheme Update shared weights jointly DeepLearning on FPGAs # For inference: Clustering ## Han et al 2015 / Han et al 2016 Cluster weights after training #### Results $\sim 20 \mathrm{x}$ compression in overall size # Sidenote: Clustering **Goal:** Find K "clusters" c_1,\ldots,c_K in data $x_1,x_2,\ldots,x_N\in\mathbb{R}$ Mathematically: $\arg\min_{c_1,\ldots,c_K}\sum_{k=1}^K\sum_{i=1}^N(x_i-c_k)^2$ ### Idea Iterative algorithm ``` 1: for i=1,2,...,K do 2: c[i] = {\tt random_without_replacement}(x_1,...,x_N) 3: while ERROR do 4: for i=1,2,...,K do 5: cnt[i]=0;tmp[i]=0 6: for i=1,2,...,N do 7: m=\arg\min_{k=1,...,K}\{(x[i]-c[k])^2\} 8: cnt[m]=cnt[m]+1;tmp[m]=tmp[m]+x[i] ``` Note: Same framework as SGD # For inference: Distribution of clustered weights ### Han et al 2016 Clustering changes weight distribution ## For inference: Distribution of clustered weights Han et al 2016 Clustering changes weight distribution #### Idea Use huffman encoding to further reduce size **Results** Additional ~ 10 x compression ## For inference: Combining all approaches Han et al 2016 Combining all three approaches 35-49x compression ratio 3-4x speed-up 3-7x less energy No loss in accuracy But Slow, due to post-processing ## For inference: Combining all approaches Han et al 2016 Combining all three approaches 35-49x compression ratio 3-4x speed-up 3-7x less energy No loss in accuracy But Slow, due to post-processing **Nowlan and Hinton 1992** Clustering during backpropagation Seems to work, but also extremely slow **So far** Not been done with todays hardware (?) #### Goal Need to achieve compression ratio ≥ 20 #### So far Compression ratio 2-4 during training Compression ratio 35-49 after training Solution: Use different NN structure Fully Connected Layer needs a lot of parameters ## Solution: Use different NN structure Fully Connected Layer needs a lot of parameters #### LeCun 1998 $28 \times 28 \rightarrow 300 \rightarrow 10 = 238200$ parameters ### Solution: Use different NN structure ### Fully Connected Layer needs a lot of parameters #### LeCun 1998 $28 \times 28 \rightarrow 300 \rightarrow 10 = 238200$ parameters #### Observation 8bit quantization gives $2^8 = 256$ different weights #### Thus ~ 930 weights will be the same, if evenly distributed Chen et al. 2015 Hashing trick Randomly group weights together 2-4x compression without performance loss ### Solution: Use different NN structure (2) #### Recall $$\delta_j^{(l-1)} = \frac{\partial h(y_i^{(l-1)})}{\partial y_i^{(l-1)}} \sum_{k=1}^{M^{(l)}} \delta_k^{(l)} w_{j,k}^{(l)}$$ ### Solution: Use different NN structure (2) #### Recall $$\delta_j^{(l-1)} = \frac{\partial h(y_i^{(l-1)})}{\partial y_i^{(l-1)}} \sum_{k=1}^{M^{(l)}} \delta_k^{(l)} w_{j,k}^{(l)}$$ **For CPUs** Use hash function h $$\delta_{j}^{(l-1)} = \frac{\partial h(y_{i}^{(l-1)})}{\partial y_{i}^{(l-1)}} \sum_{k=1}^{M^{(l)}} \delta_{k}^{(l)} w_{\phi(j,k)}^{(l)}$$ ### Solution: Use different NN structure (2) #### Recall $$\delta_{j}^{(l-1)} = \frac{\partial h(y_{i}^{(l-1)})}{\partial y_{i}^{(l-1)}} \sum_{k=1}^{M^{(l)}} \delta_{k}^{(l)} w_{j,k}^{(l)}$$ For CPUs Use hash function h $$\delta_{j}^{(l-1)} = \frac{\partial h(y_{i}^{(l-1)})}{\partial y_{i}^{(l-1)}} \sum_{k=1}^{M^{(l)}} \delta_{k}^{(l)} w_{\phi(j,k)}^{(l)}$$ #### For FPGAs Compute hashing once offline + hard-code memory Hash function ϕ Fast and easy, e.g. xxHash Design Goal Fine-tune implementation whenever possible **Design Goal** Fine-tune implementation whenever possible **Jouppi et al. 2016** TPU mostly built from systolic arrays Design Goal Fine-tune implementation whenever possible Jouppi et al. 2016 TPU mostly built from systolic arrays #### Idea Use basic processing elements (PE) Heavily pipeline computation in two dimensions Design Goal Fine-tune implementation whenever possible Jouppi et al. 2016 TPU mostly built from systolic arrays #### Idea Use basic processing elements (PE) Heavily pipeline computation in two dimensions #### Then Local communication Synchronization by design High throughput ### Summary #### Important concepts: - Moore's law will expire around 2020 - **FPGAs** are programmable hardware circuits - FPGAs work well with parallelism and custom data ranges - Use a combination of CPU and FPGA - HLS helps us to program FPGAs in a timely matter - Loop unrolling / Pipelining are two possible optimizations - Reduce communication between CPU and FPGA - Use fixed floating point operations if possible ### Homework (mandatory!!) Implement backpropagation in C/C++ for the following network: Input: 784 (MNIST) ■ Hidden: 300, ReLu activation Output: 10, sigmoid, MSE Important 1: You will also need a CSV reader in C/C++ Important 2: Statically allocate all the memory needed - no malloc/new **Note:** Expected accuracy is around 92% This is mandatory: We will put parts of this network on the FPGA next session! # Homework (also mandatory!!) ### What are your projects going to be? It should include - preprocessing of data - neural network architecture - model training - FPGA usage # Homework (also mandatory!!) ### What are your projects going to be? It should include preprocessing of data model training neural network architecture FPGA usage **Important:** You are free to choose your focus **Example 1:** Focus on fast implementation for fully connected / convolution on FPGA. Tests mainly on MNIST **Example 2:** Focus on Cats-Vs-Dogs data set. Use existing framework and do a lot of pre-processing / model training **Example 3:** Focus on integration of FPGA. Use pre-trained model and compute inference on FPGA Please: Ask me for help / advice!