

DeepLearning on FPGAs

Introduction to FPGAs

Sebastian Buschjäger

Technische Universität Dortmund - Fakultät Informatik - Lehrstuhl 8

October 24, 2017

 $\begin{array}{l} \textbf{Observation 1} \ \, \textbf{Even smaller images need a lot of neurons} \\ \textbf{Our approach Discrete convolution} \end{array}$

$$k_c = \sum_{i=1}^r w_i \cdot c_i = \vec{w} * \vec{c}$$

170	20	153	11
122	39	70	200
180	80	10	120
20	120	45	140

image

kernel / weights / filter

 $\begin{array}{c} \textbf{Observation 1} \ \, \textbf{Even smaller images need a lot of neurons} \\ \textbf{Our approach Discrete convolution} \end{array}$

$$k_c = \sum_{i=1}^r w_i \cdot c_i = \vec{w} * \vec{c}$$

170	20	153	11
122	39	70	200
180	80	10	120
20	120	45	140

image

$$180 \cdot 1 - 80 \cdot 0.5 - 20 \cdot 0.5 + 120 \cdot 1 = 250$$

kernel / weights / filter

 $\begin{array}{c} \textbf{Observation 1} \ \, \textbf{Even smaller images need a lot of neurons} \\ \textbf{Our approach Discrete convolution} \end{array}$

$$k_c = \sum_{i=1}^r w_i \cdot c_i = \vec{w} * \vec{c}$$

170	20	153	11
122	39	70	200
180	80	10	120
20	120	45	140

image

 $10 \cdot 1 - 120 \cdot 0.5 - 45 \cdot 0.5 + 140 \cdot 1 = 67$

kernel / weights / filter

 $\begin{array}{l} \textbf{Observation 1} \ \, \textbf{Even smaller images need a lot of neurons} \\ \textbf{Our approach Discrete convolution} \end{array}$

$$k_c = \sum_{i=1}^r w_i \cdot c_i = \vec{w} * \vec{c}$$

170	20	153	11
122	39	70	200
180	80	10	120
20	120	45	140

$$* \begin{array}{c|c} 1 & -0.5 \\ \hline -0.5 & 1 \end{array} = \begin{array}{c|c} 138 \\ \hline 250 & 67 \end{array}$$

$$170 \cdot 1 - 20 \cdot 0.5 - 122 \cdot 0.5 + 39 \cdot 1 = 138$$

kernel / weights / filter

 $\begin{array}{c} \textbf{Observation 1} \ \, \textbf{Even smaller images need a lot of neurons} \\ \textbf{Our approach Discrete convolution} \end{array}$

$$k_c = \sum_{i=1}^r w_i \cdot c_i = \vec{w} * \vec{c}$$

170	20	153	11
122	39	70	200
180	80	10	120
20	120	45	140

image

*

$$\begin{array}{c|cccc}
1 & -0.5 \\
-0.5 & 1
\end{array}$$

138 255250 67

$$153 \cdot 1 - 11 \cdot 0.5 - 70 \cdot 0.5 + 200 \cdot 1 = 255$$

kernel / weights / filter

Recap: CNNs and weight sharing

Mathematically:

Recap: Backpropagation for CNNs

Gradient step:

$$\begin{array}{lcl} w_{i,j}^{(l)} & = & w_{i,j}^{(l)} - \alpha \cdot \delta^{(l)} * rot 180(f)^{(l-1)} f_{i,j}^{(l-1)} \\ b_j^{(l)} & = & b_j^{(l)} - \alpha \cdot \delta_j^{(l)} \end{array}$$

Recursion:

$$\delta^{(l+1)} = \delta^{(l)} * rot180(w^{(l+1)}) \cdot \frac{\partial h(y_{i,j}^l)}{\partial h(y_{i,j}^l)}$$

Recap: Backpropagation for CNNs

Gradient step:

$$\begin{array}{lcl} w_{i,j}^{(l)} & = & w_{i,j}^{(l)} - \alpha \cdot \delta^{(l)} * rot180(f)^{(l-1)} f_{i,j}^{(l-1)} \\ b_j^{(l)} & = & b_j^{(l)} - \alpha \cdot \delta_j^{(l)} \end{array}$$

Recursion:

Hardware: Current trends

Moore's law: The number of transistors on a chip doubles every 12-24 month \Rightarrow We can double the speed roughly every 2 years

¹Intel predicts 5nm transistors to be available around 2020.

Hardware: Current trends

Moore's law: The number of transistors on a chip doubles every 12-24 month \Rightarrow We can double the speed roughly every 2 years

Fact 1: Engineering is currently producing 11 - 16nm transistors¹ Side-Note: A 4nm transistor can be built from only 7 atoms! Fact 2: The smaller transistors get, the more quantum effects are happening. Moore's law is predicted to expire with 5nm transistors

¹Intel predicts 5nm transistors to be available around 2020.

Hardware: Current trends

Moore's law: The number of transistors on a chip doubles every 12-24 month \Rightarrow We can double the speed roughly every 2 years

Fact 1: Engineering is currently producing 11-16nm transistors 1 Side-Note: A 4nm transistor can be built from only 7 atoms! Fact 2: The smaller transistors get, the more quantum effects are happening. Moore's law is predicted to expire with 5nm transistors

How to deal with this problem

- Multi/Many core systems
- Add specialized components in CPU
- Use dedicated hardware for specific tasks

¹Intel predicts 5nm transistors to be available around 2020.

Hardware Overview

Fact:

speed: fastest

energy: $\sim \mu W$

application specific

costs: expensive

Fact:

speed: fast

energy: \sim W

general purpose

costs: cheap

Hardware Overview

Fact:

- speed: fastest
- energy: $\sim \mu W$
- application specific
- costs: expensive

Hope:

- speed: faster
- energy: ~ mW
- general + specific
- costs: cheap

Fact:

- speed: fast
 - energy: \sim W
- general purpose
- costs: cheap

FPGA: How does it work?

- chip layout 2D grid
- configurable connections between blocks
- configurable logic blocks (CL)
- input/output blocks (IO)
- hard-wired on boards with standard interface
- programmed and flashed with external PC

DeepLearning on FPGAs 9

FPGA: Signal Routing

DeepLearning on FPGAs

FPGA: Configurable Logic Block

■ Inherent parallelism: We can perform computations in real parallel in any level of granularity

- Inherent parallelism: We can perform computations in real parallel in any level of granularity
- Large on-chip memory: Modern CPUs offer caches in the range of ~ 8 Mb. Today's largest FPGA chips offer on-chip memory in the range of ~ 64 Mb

- Inherent parallelism: We can perform computations in real parallel in any level of granularity
- Large on-chip memory: Modern CPUs offer caches in the range of ~ 8 Mb. Today's largest FPGA chips offer on-chip memory in the range of ~ 64 Mb
- **Arbitrary word sizes:** Modern CPUs and GPUs are built and optimized for specific word sizes, e.g. 64 bit. In FPGAs, the word size is arbitrary and can fit the problem given

- Inherent parallelism: We can perform computations in real parallel in any level of granularity
- Large on-chip memory: Modern CPUs offer caches in the range of ~ 8 Mb. Today's largest FPGA chips offer on-chip memory in the range of ~ 64 Mb
- **Arbitrary word sizes:** Modern CPUs and GPUs are built and optimized for specific word sizes, e.g. 64 bit. In FPGAs, the word size is arbitrary and can fit the problem given
- Large IO capabilities: Modern CPUs and GPUs have to use PCIe and direct memory access (DMA) for data IO. FPGAs are free to use what's necessary.

■ Slow clock rate: CPUs / GPUs are clocked with $\sim 2-3$ GHz, FPGAs with ~ 200 Mhz

- Slow clock rate: CPUs / GPUs are clocked with $\sim 2-3$ GHz, FPGAs with ~ 200 Mhz
- **No abstractions:** CPUs / GPUs offer a stack and a heap with data addressing etc. FPGAs just offer raw hardware

- Slow clock rate: CPUs / GPUs are clocked with $\sim 2-3$ GHz, FPGAs with ~ 200 Mhz
- **No abstractions:** CPUs / GPUs offer a stack and a heap with data addressing etc. FPGAs just offer raw hardware
- No optimizations: CPUs / GPUs offer a well developed tool-chain support. Additionally, modern CPUs/GPUs often offer specialized hardware instructions

Note 1: High-end FPGAs offer clock rates around 800 Mhz **Note 2:** High-end FPGAs also offer specialized hardware blocks, e.g. digital processing units or floating point units

- Slow clock rate: CPUs / GPUs are clocked with $\sim 2-3$ GHz, FPGAs with ~ 200 Mhz
- **No abstractions:** CPUs / GPUs offer a stack and a heap with data addressing etc. FPGAs just offer raw hardware
- No optimizations: CPUs / GPUs offer a well developed tool-chain support. Additionally, modern CPUs/GPUs often offer specialized hardware instructions

Note 1: High-end FPGAs offer clock rates around 800 Mhz **Note 2:** High-end FPGAs also offer specialized hardware blocks, e.g. digital processing units or floating point units

Note 3: Tool support for FPGAs are growing. The so-called 3rd wave of tools finally enables FPGAs for the mass-market

FPGA: Workflow HDL programming synthesis place & route FPGA high level synthesis SDK programming

Hardware Description Languages (HDL):

- describe hardware on transistor and gate level
- modelling real concurrency
- modelling signal flow & timings

- low level bit operations
- high level operations like sums, products, ...
- verified using simulator

Hardware Description Languages (HDL):

- describe hardware on transistor and gate level
- modelling real concurrency
- modelling signal flow & timings

- low level bit operations
- high level operations like sums, products, ...
- verified using simulator

Note: HDLs are used by hardware designers. HDLs are extremely low-level, but allow ultimate control over your design

But: HDL designs need time and care \rightarrow We focus on HLS

Basic idea: Automatically translate high level code into HDL

- Automate tedious work
- Compile code specifically for target device
- Lets you explore design space effectively

- Output should be reviewed
- Code must be changed for HLS tool
- Only works on subset of high level language

Basic idea: Automatically translate high level code into HDL

- Automate tedious work
- Compile code specifically for target device
- Lets you explore design space effectively

- Output should be reviewed
- Code must be changed for HLS tool
- Only works on subset of high level language

Note: HLS lets you describe your hardware in C-Code and the HLS tool will try to guess what you code meant and put that on the FPGA (more later)

Synthesis: Calculate CL configurations

- → **So far:** HDL contains abstractions, e.g. summation
- → **Thus:** Compile these to a gate description, e.g. half/full-adder
- \Rightarrow The netlist contains the functionality of all units of the design

Synthesis: Calculate CL configurations

- → **So far:** HDL contains abstractions, e.g. summation
- \rightarrow **Thus:** Compile these to a gate description, e.g. half/full-adder
- \Rightarrow The netlist contains the functionality of all units of the design

Place & Route: Calculate signal routing

- →So far: We have netlist with all functional units of our design
- \Rightarrow Calculate, which CL implements which functionality and how they are connected

Important: Synthesis and place & route may fail!

Important: Synthesis and place & route may fail!

Observation 1: HDL and HLS allow us to express things, which are not existent in hardware, e.g. files

Observation 2: Hardware is usually clocked. Place & route may fail to provide the necessary timings to achieve the given clock.

Important: Synthesis and place & route may fail!

Observation 1: HDL and HLS allow us to express things, which are not existent in hardware, e.g. files

Observation 2: Hardware is usually clocked. Place & route may fail to provide the necessary timings to achieve the given clock.

Note 1: We aim for a clock around 125 - 150 Mhz.

Note 2: Synthesis and place & route perform a lot of optimizations. Thus this phase is slow (minutes - hours)

Observation 1: We can use IP from other programmers¹

¹E.g. http://opencores.com/

Observation 1: We can use IP from other programmers¹

Observation 2: There are so-called soft processors

- Small processors with own ISA
- Mostly configurable in terms of Caches, Pipelining etc.
- Different optimizations for energy or throughput available
- Usually programmed in C-like language with own compiler

¹E.g. http://opencores.com/

So: For what do be use FPGAs?

- CPUs are optimized towards latency
 - → Execute a single operation as fast as possible
- GPUs are optimized towards throughput
 - \rightarrow Process as much data a as fast as possible
- FPGAs are optimized towards?

So: For what do be use FPGAs?

- CPUs are optimized towards latency
 - \rightarrow Execute a single operation as fast as possible
- GPUs are optimized towards throughput
 - → Process as much data a as fast as possible
- FPGAs are optimized towards?

Fact: CPU and GPU designers are smart people!

 \Rightarrow It is though to beat a CPU / GPU only with an FPGA

So: For what do be use FPGAs?

- CPUs are optimized towards latency
 - → Execute a single operation as fast as possible
- GPUs are optimized towards throughput
 - → Process as much data a as fast as possible
- FPGAs are optimized towards?

Fact: CPU and GPU designers are smart people! \Rightarrow It is though to beat a CPU / GPU only with an FPGA

Rule-of-thumb: CPU is good for control flow FPGAs / GPUs are good for number crunching

Thus: Combine FPGAs with CPUs

Either: As PCle cards in desktop / server systems

- Needs a custom written driver for PCIe
- Usually needs special licenses on FPGA chip or own PCle protocol implementation
- Requires full desktop system

Either: As PCle cards in desktop / server systems

- Needs a custom written driver for PCIe
- Usually needs special licenses on FPGA chip or own PCle protocol implementation
- Requires full desktop system

Or: fully integrated on development boards

- On-board connections are known, thus 1 driver needed
- Does not require full desktop system ⇒ Less energy

Either: As PCle cards in desktop / server systems

- Needs a custom written driver for PCIe
- Usually needs special licenses on FPGA chip or own PCle protocol implementation
- Requires full desktop system

Or: fully integrated on development boards

- On-board connections are known, thus 1 driver needed
- Does not require full desktop system ⇒ Less energy

Our focus: Embedded boards with FPGA Co-Processors

Board: Xilinx ZedBoard

ARM Cortex-A9 Dual Core CPU with 666 Mhz

■ RAM: 512 Mb DDR RAM

■ **Memory:** 512 Kb Cache

FPGA: Xilinx Artix-7 Z-7020

LUT: 53200

■ **CLB**: 83000

■ Block-Ram: 4.9 Mb

■ **DSP**: 220

Board: Xilinx ZedBoard

ARM Cortex-A9 Dual Core CPU with 666 Mhz

■ RAM: 512 Mb DDR RAM

■ **Memory:** 512 Kb Cache

FPGA: Xilinx Artix-7 Z-7020

LUT: 53200

■ CLB: 83000

■ Block-Ram: 4.9 Mb

■ **DSP**: 220

Idea: Run full blown Linux on CPU and connect with FPGA

Thus: Easy software development for "glue" code + fast energy

and efficient computations

Board: Xilinx ZedBoard

ARM Cortex-A9 Dual Core CPU with 666 Mhz

■ RAM: 512 Mb DDR RAM

■ **Memory:** 512 Kb Cache

FPGA: Xilinx Artix-7 Z-7020

■ LUT: 53200 ■ CLB: 83000

■ Block-Ram: 4.9 Mb

■ **DSP:** 220

Idea: Run full blown Linux on CPU and connect with FPGA

Thus: Easy software development for "glue" code + fast energy

and efficient computations

CPU: Programmed in C

FPGA: Programmed in C or VHDL/Verilog

Board: Xilinx ZedBoard

ARM Cortex-A9 Dual Core CPU with 666 Mhz

■ RAM: 512 Mb DDR RAM

Memory: 512 Kb Cache

FPGA: Xilinx Artix-7 Z-7020

■ LUT: 53200 ■ CLB: 83000

■ Block-Ram: 4.9 Mb

■ **DSP:** 220

Idea: Run full blown Linux on CPU and connect with FPGA

Thus: Easy software development for "glue" code + fast energy

and efficient computations

CPU: Programmed in C

FPGA: Programmed in C or VHDL/Verilog

Question: How do we combine both?

Software driven System on a Chip development (SDSoC)

Note: FPGA interface might change

Thus: Linux kernel driver needed for every new hardware block

 \rightarrow Writing Linux kernel drivers is a though task

Software driven System on a Chip development (SDSoC)

Note: FPGA interface might change

Thus: Linux kernel driver needed for every new hardware block

 \rightarrow Writing Linux kernel drivers is a though task

Thus: We use software for that: Xilinx SDSoC

- Standard eclipse GUI for C/C++ programming
- Standard gcc ARM compiler for C/C++ code
- HLS automatically compiles C/C++ code to HDL
- SDSoC generates a kernel driver based on the HLS' output

Software driven System on a Chip development (SDSoC)

Note: FPGA interface might change

Thus: Linux kernel driver needed for every new hardware block

→ Writing Linux kernel drivers is a though task

Thus: We use software for that: Xilinx SDSoC

- Standard eclipse GUI for C/C++ programming
- Standard gcc ARM compiler for C/C++ code
- HLS automatically compiles C/C++ code to HDL
- SDSoC generates a kernel driver based on the HLS' output

In the end: We get a bootable Linux image for sd card with integrated hardware accelerator

AXI-Interface

Fact 1: The FPGA can support any hardware interface we desire

Fact 2: The ARMs hardware interface is fixed

 \Rightarrow The ARM and the FPGA are connected using the AXI interface

AXI-Interface

Fact 1: The FPGA can support any hardware interface we desire **Fact 2:** The ARMs hardware interface is fixed

 \Rightarrow The ARM and the FPGA are connected using the AXI interface

AXI is part of the AMBA protocol stack. It specifies the way how system-on-a-chip components (CPU, RAM, FPGA...) should talk to each other. There are 3 variants:

- AXI-Lite: easy, simple communication
- AXI-Stream: high throughput in streaming settings
- AXI: high speed, low latency

AXI-Interface

Fact 1: The FPGA can support any hardware interface we desire **Fact 2:** The ARMs hardware interface is fixed

 \Rightarrow The ARM and the FPGA are connected using the AXI interface

AXI is part of the AMBA protocol stack. It specifies the way how system-on-a-chip components (CPU, RAM, FPGA...) should talk to each other. There are 3 variants:

- AXI-Lite: easy, simple communication
- AXI-Stream: high throughput in streaming settings
- AXI: high speed, low latency

Note: HLS generates the desired interface for us

High Level Synthesis: Interface generation

```
\#define PRAGMA_SUB(x) _Pragma (\#x)
    #define DO_PRAGMA(x) PRAGMA_SUB(x)
    float diff(float const pX1[dim], float const pX2[dim]) const {
    DO_PRAGMA(HLS INTERFACE s_axilite port=pX1 depth=dim);
    DO_PRAGMA(HLS_INTERFACE_s_axilite_port=pX2_depth=dim_):
6
    #pragma HLS INTERFACE s_axilite port=return
8
            float sum = 0:
9
            for (unsigned int i = 0; i < dim; ++i) {
10
                sum += (pX1[i]-pX2[i])*(pX1[i]-pX2[i]);
11
12
13
            return sum;
```

Note 1: In standard C "bool predict(float const pX[dim])" is the same as "bool predict(float const *pX)", but HLS explicitly needs to know the size!

High Level Synthesis: Interface generation

```
\#define PRAGMA_SUB(x) _Pragma (\#x)
    #define DO_PRAGMA(x) PRAGMA_SUB(x)
    float diff(float const pX1[dim], float const pX2[dim]) const {
    DO_PRAGMA(HLS INTERFACE s_axilite port=pX1 depth=dim);
    DO_PRAGMA(HLS_INTERFACE_s_axilite_port=pX2_depth=dim_):
6
    #pragma HLS INTERFACE s_axilite port=return
8
            float sum = 0:
9
            for (unsigned int i = 0; i < dim; ++i) {
10
                sum += (pX1[i]-pX2[i])*(pX1[i]-pX2[i]);
11
12
13
            return sum;
```

Note 1: In standard C "bool predict(float const pX[dim])" is the same as "bool predict(float const *pX)", but HLS explicitly needs to know the size!

Note 2: We use a special pragma if we need to use parameters

High Level Synthesis: Interface generation

```
\#define PRAGMA_SUB(x) _Pragma (\#x)
    #define DO_PRAGMA(x) PRAGMA_SUB(x)
    float diff(float const pX1[dim], float const pX2[dim]) const {
    DO_PRAGMA(HLS INTERFACE s_axilite port=pX1 depth=dim);
    DO_PRAGMA(HLS_INTERFACE_s_axilite_port=pX2_depth=dim_):
6
    #pragma HLS INTERFACE s_axilite port=return
8
            float sum = 0:
9
            for (unsigned int i = 0; i < dim; ++i) {
10
                sum += (pX1[i]-pX2[i])*(pX1[i]-pX2[i]);
11
12
13
            return sum;
```

Note 1: In standard C "bool predict(float const pX[dim])" is the same as "bool predict(float const *pX)", but HLS explicitly needs to know the size!

Note 2: We use a special pragma if we need to use parameters

Note 3: s_axilite can be replaced by axis for axi-stream

Deep Learning: Some considerations

Fact 1: DNNs have a lot of parameters

Fact 2: Many SGD steps are required to get reasonable results

Deep Learning: Some considerations

Fact 1: DNNs have a lot of parameters

Fact 2: Many SGD steps are required to get reasonable results

- We need a lot of data
- We need to learn a lot of parameters
- We need to perform many SGD steps until convergence

Deep Learning: Some considerations

Fact 1: DNNs have a lot of parameters

Fact 2: Many SGD steps are required to get reasonable results

- We need a lot of data
- We need to learn a lot of parameters
- We need to perform many SGD steps until convergence

Additional: We want to use Deep Learning in embedded context's, such as car, robots, etc.

Important: Model inference is different from model training

 \rightarrow Optimizations are task specific!

Deep Learning: A hardware perspective

Clear: DeepLearning greatly benefits from new and fast hardware Note: This is well known. Many publications date back decades ago about specialized Neural-Network hardware

DeepLearning on FPGAs

Deep Learning: A hardware perspective

Clear: DeepLearning greatly benefits from new and fast hardware Note: This is well known. Many publications date back decades ago about specialized Neural-Network hardware

- **Until** 2010: Libs for NN mostly CPU based. Research for dedicated hardware available.
- From 2010: GPUs are widely available in mass-market. NN libs with GPUs backends become popular.

Deep Learning: A hardware perspective

Clear: DeepLearning greatly benefits from new and fast hardware Note: This is well known. Many publications date back decades ago about specialized Neural-Network hardware

- **Until** 2010: Libs for NN mostly CPU based. Research for dedicated hardware available.
- From 2010: GPUs are widely available in mass-market. NN libs with GPUs backends become popular.
- Upcoming: More specialized hardware is being used
 - Januar 2016: Nvidias Drive PX2 for autonomous cars
 - June 2016: Googles Tensor Processing Unit (TPU)
 - May 2017: Googles Tensor Processing Unit 2.0 (TPU)

Currently: GPUs are state-of-the art - Why use FPGAs?

Deep Learning: Better performance per Watt

Ovtcharov et al. 2015 256×256 images

GPU 376 images / sec with 235 W $\Rightarrow 0.625$ J / image

FPGA 134 images / sec with 25 W $\Rightarrow 0.1866$ J / image

Deep Learning: Better performance per Watt

Ovtcharov et al. 2015 256×256 images

GPU 376 images / sec with 235 W $\Rightarrow 0.625$ J / image

FPGA 134 images / sec with 25 W $\Rightarrow 0.1866$ J / image

Qiu et al. 2016 482×415 images

GPU 57.9 images / sec with 250 W \Rightarrow 4.31 J / image

FPGA 4.45 images / sec with $9.3~\mathrm{W} \Rightarrow 2.08~\mathrm{J}$ / image

Deep Learning: Better performance per Watt

Ovtcharov et al. 2015 256×256 images

GPU 376 images / sec with 235 W $\Rightarrow 0.625$ J / image

FPGA 134 images / sec with 25 W $\Rightarrow 0.1866$ J / image

Qiu et al. 2016 482×415 images

GPU 57.9 images / sec with 250 W \Rightarrow 4.31 J / image

FPGA 4.45 images / sec with $9.3~\mathrm{W} \Rightarrow 2.08~\mathrm{J}$ / image

Thus: FPGAs may offer better performance per watt

Question: How do we bring DNNs to FPGAs?

Design Goal Use on-chip memory whenever possible

Design Goal Use on-chip memory whenever possible

Plan

Reduce size of network to $\sim 10~\mathrm{Mb}$

AlexNet

 ~ 60 M parameter a 4 byte $\Rightarrow 240$ Mb model size

VGG-16

 ~ 130 M parameter a 4 byte $\Rightarrow 520$ Mb model size

Design Goal Use on-chip memory whenever possible

Plan

Reduce size of network to $\sim 10~\mathrm{Mb}$

AlexNet

 ~ 60 M parameter a 4 byte $\Rightarrow 240$ Mb model size

VGG-16

 ~ 130 M parameter a 4 byte $\Rightarrow 520$ Mb model size

Goal

Need to achieve compression ratio ≥ 20

Solution: Use smaller data types (1)

Gupta et al. 2015, Han et. al 2016, Gysel et. al 2016 . . .

Reduction $32 \to 16$ bit nearly no performance difference in training Reduction $32 \to 8$ bit nearly no performance difference in inference Reduction $32 \to 2$ bit also possible, but requires special training

Solution: Use smaller data types (1)

Gupta et al. 2015, Han et. al 2016, Gysel et. al 2016 . . .

Reduction $32 \rightarrow 16$ bit nearly no performance difference in training Reduction $32 \rightarrow 8$ bit nearly no performance difference in inference Reduction $32 \rightarrow 2$ bit also possible, but requires special training

Thus

Compression factor 2-4 for free using fixed point

Solution: Use smaller data types (2)

Fixed point

$$X_{fx} = \underbrace{X_{(1)}X_{(0)}}_{N_l} \cdot \underbrace{X_{(-1)}X_{(-2)}X_{(-3)}X_{(-4)}}_{N_r}$$

Implementation As scaled integer of size N_t , e.g. char for 8 bit

Solution: Use smaller data types (2)

Fixed point

$$X_{fx} = \underbrace{X_{(1)}X_{(0)}}_{N_l} \underbrace{X_{(-1)}X_{(-2)}X_{(-3)}X_{(-4)}}_{N_r}$$

Implementation As scaled integer of size N_t , e.g. char for 8 bit

Fixed
$$\rightarrow$$
 float: $X_{fl} = \sum_{i=0}^{N_l} X_{(i)} 2^i + \sum_{i=-1}^{-N_r} X_{(-i)} 2^{-i}$

Float
$$\rightarrow$$
 fixed: $X_{fx} = \lfloor X_{fl} \cdot 2^{N_r} \rfloor$

Solution: Use smaller data types (2)

Fixed point

$$X_{fx} = \underbrace{X_{(1)}X_{(0)}}_{N_l} \underbrace{X_{(-1)}X_{(-2)}X_{(-3)}X_{(-4)}}_{N_r}$$

Implementation As scaled integer of size N_t , e.g. char for 8 bit

$$\mathsf{Fixed} \to \mathsf{float} \colon X_{fl} = \sum_{i=0}^{N_l} X_{(i)} 2^i + \sum_{i=-1}^{-N_r} X_{(-i)} 2^{-i}$$

Float
$$\rightarrow$$
 fixed: $X_{fx} = |X_{fl} \cdot 2^{N_r}|$

use shift operations!
$$2^i = (1 << i)$$
 $2^{-i} = (1 >> i)$

Note In SDSoC there is a datatype ap_fixed $< N_l$, $N_r >$

Solution: Use smaller data types (3)

Addition/substraction No changes required

$$\boldsymbol{X}_{fx}^{''} = \boldsymbol{X}_{fx} + \boldsymbol{X}_{fx}^{'} = \lfloor \boldsymbol{X}_{fl} \cdot 2^{N_r} \rfloor + \lfloor \boldsymbol{X}_{fl}^{'} \cdot 2^{N_r} \rfloor = \lfloor (\boldsymbol{X}_{fl} + \boldsymbol{X}_{fl}^{'}) \cdot 2^{N_r} \rfloor$$

Solution: Use smaller data types (3)

Addition/substraction No changes required

$$\boldsymbol{X}_{fx}^{''} = \boldsymbol{X}_{fx} + \boldsymbol{X}_{fx}^{'} = \lfloor \boldsymbol{X}_{fl} \cdot 2^{N_r} \rfloor + \lfloor \boldsymbol{X}_{fl}^{'} \cdot 2^{N_r} \rfloor = \lfloor (\boldsymbol{X}_{fl} + \boldsymbol{X}_{fl}^{'}) \cdot 2^{N_r} \rfloor$$

Multiplication/Division Correct scaling

$$X_{fx} \cdot X'_{fx} = \lfloor X_{fl} \cdot 2^{N_r} \rfloor \cdot \lfloor X'_{fl} \cdot 2^{N_r} \rfloor = \lfloor (X_{fl} \cdot X'_{fl}) \cdot (2^{N_r} \cdot 2^{N_r}) \rfloor$$
$$\Rightarrow X''_{fx} = X_{fx} \cdot X'_{fx} \cdot 2^{-N_r}$$

Solution: Use smaller data types (4)

Caution For training

SGD requires unbiased estimate of gradient

Solution: Use smaller data types (4)

Caution For training

SGD requires unbiased estimate of gradient

Fixed point
$$X_{fx} = \lfloor X_{fl} \cdot 2^{N_r} \rfloor$$

Gradient estimate is biased towards smaller number

Solution: Use smaller data types (4)

Caution For training

SGD requires unbiased estimate of gradient

Fixed point
$$X_{fx} = \lfloor X_{fl} \cdot 2^{N_r} \rfloor$$

Gradient estimate is biased towards smaller number

Gupta et al. 2015 Stochastic rounding

$$X_{fx} = \begin{cases} \lfloor X_{fl} \cdot 2^{N_r} \rfloor & \text{with prob. p} \sim X_{fl} - \lfloor X_{fl} \rfloor \\ \lfloor X_{fl} \cdot 2^{N_r} + 2^{-N_r} \rfloor & \text{else} \end{cases}$$

Courbariaux et al. 2015, Hubara et al. 2016 Use binary / ternary weights during forward pass

Rastegari et al. 2016 XNOR-Net Utilize binary operations for forward pass

Courbariaux et al. 2015, Hubara et al. 2016 Use binary / ternary weights during forward pass

Rastegari et al. 2016 XNOR-Net Utilize binary operations for forward pass

But Train network using (quantized) real values

Courbariaux et al. 2015, Hubara et al. 2016 Use binary / ternary weights during forward pass

Rastegari et al. 2016 XNOR-Net Utilize binary operations for forward pass

But Train network using (quantized) real values

So far No binary SGD

Courbariaux et al. 2015, Hubara et al. 2016 Use binary / ternary weights during forward pass

Rastegari et al. 2016 XNOR-Net Utilize binary operations for forward pass

But Train network using (quantized) real values

So far No binary SGD

What about model inference?

For inference: Prune Connections

Han et al. 2015 Prune connections and retrain weights

Train network as always

Delete all connections with $w_{i,j}^l \leq \tau^l$

Retrain network with deleted connections

For inference: Prune Connections

Han et al. 2015 Prune connections and retrain weights

Train network as always

Delete all connections with $w_{i,j}^l \leq \tau^l$

Retrain network with deleted connections

Note Delete neurons if not connected anymore

Results 9 - 13x compression in overall size + no loss in accuracy

But Extremely slow + threshold τ^l not clear

For inference: Distribution of weights

Han et al 2015 Weights are somewhat Gaussian distributed

For inference: Distribution of weights

Han et al 2015 Weights are somewhat Gaussian distributed

In red Fixed point quantization **In green** Dynamic quantization

For inference: Clustering

Han et al 2015 / Han et al 2016 Cluster weights after training

Cluster weights

Extract centroids

Assign indexing scheme

Update shared weights jointly

DeepLearning on FPGAs

For inference: Clustering

Han et al 2015 / Han et al 2016 Cluster weights after training

Results

 $\sim 20 \mathrm{x}$ compression in overall size

Sidenote: Clustering

Goal: Find K "clusters" c_1,\ldots,c_K in data $x_1,x_2,\ldots,x_N\in\mathbb{R}$ Mathematically: $\arg\min_{c_1,\ldots,c_K}\sum_{k=1}^K\sum_{i=1}^N(x_i-c_k)^2$

Idea Iterative algorithm

```
1: for i=1,2,...,K do

2: c[i] = {\tt random\_without\_replacement}(x_1,...,x_N)

3: while ERROR do

4: for i=1,2,...,K do

5: cnt[i]=0;tmp[i]=0

6: for i=1,2,...,N do

7: m=\arg\min_{k=1,...,K}\{(x[i]-c[k])^2\}

8: cnt[m]=cnt[m]+1;tmp[m]=tmp[m]+x[i]
```

Note: Same framework as SGD

For inference: Distribution of clustered weights

Han et al 2016 Clustering changes weight distribution

For inference: Distribution of clustered weights

Han et al 2016 Clustering changes weight distribution

Idea

Use huffman encoding to further reduce size

Results Additional ~ 10 x compression

For inference: Combining all approaches

Han et al 2016 Combining all three approaches

35-49x compression ratio

3-4x speed-up

3-7x less energy

No loss in accuracy

But Slow, due to post-processing

For inference: Combining all approaches

Han et al 2016 Combining all three approaches

35-49x compression ratio

3-4x speed-up

3-7x less energy

No loss in accuracy

But Slow, due to post-processing

Nowlan and Hinton 1992 Clustering during backpropagation Seems to work, but also extremely slow

So far Not been done with todays hardware (?)

Goal

Need to achieve compression ratio ≥ 20

So far

Compression ratio 2-4 during training Compression ratio 35-49 after training

Solution: Use different NN structure

Fully Connected Layer needs a lot of parameters

Solution: Use different NN structure

Fully Connected Layer needs a lot of parameters

LeCun 1998

 $28 \times 28 \rightarrow 300 \rightarrow 10 = 238200$ parameters

Solution: Use different NN structure

Fully Connected Layer needs a lot of parameters

LeCun 1998

 $28 \times 28 \rightarrow 300 \rightarrow 10 = 238200$ parameters

Observation

8bit quantization gives $2^8 = 256$ different weights

Thus

 ~ 930 weights will be the same, if evenly distributed

Chen et al. 2015 Hashing trick Randomly group weights together 2-4x compression without performance loss

Solution: Use different NN structure (2)

Recall

$$\delta_j^{(l-1)} = \frac{\partial h(y_i^{(l-1)})}{\partial y_i^{(l-1)}} \sum_{k=1}^{M^{(l)}} \delta_k^{(l)} w_{j,k}^{(l)}$$

Solution: Use different NN structure (2)

Recall

$$\delta_j^{(l-1)} = \frac{\partial h(y_i^{(l-1)})}{\partial y_i^{(l-1)}} \sum_{k=1}^{M^{(l)}} \delta_k^{(l)} w_{j,k}^{(l)}$$

For CPUs Use hash function h

$$\delta_{j}^{(l-1)} = \frac{\partial h(y_{i}^{(l-1)})}{\partial y_{i}^{(l-1)}} \sum_{k=1}^{M^{(l)}} \delta_{k}^{(l)} w_{\phi(j,k)}^{(l)}$$

Solution: Use different NN structure (2)

Recall

$$\delta_{j}^{(l-1)} = \frac{\partial h(y_{i}^{(l-1)})}{\partial y_{i}^{(l-1)}} \sum_{k=1}^{M^{(l)}} \delta_{k}^{(l)} w_{j,k}^{(l)}$$

For CPUs Use hash function h

$$\delta_{j}^{(l-1)} = \frac{\partial h(y_{i}^{(l-1)})}{\partial y_{i}^{(l-1)}} \sum_{k=1}^{M^{(l)}} \delta_{k}^{(l)} w_{\phi(j,k)}^{(l)}$$

For FPGAs

Compute hashing once offline + hard-code memory Hash function ϕ Fast and easy, e.g. xxHash

Design Goal Fine-tune implementation whenever possible

Design Goal Fine-tune implementation whenever possible **Jouppi et al. 2016** TPU mostly built from systolic arrays

Design Goal Fine-tune implementation whenever possible

Jouppi et al. 2016 TPU mostly built from systolic arrays

Idea

Use basic processing elements (PE)
Heavily pipeline computation in two dimensions

Design Goal Fine-tune implementation whenever possible

Jouppi et al. 2016 TPU mostly built from systolic arrays

Idea

Use basic processing elements (PE)
Heavily pipeline computation in two dimensions

Then

Local communication Synchronization by design High throughput

Summary

Important concepts:

- Moore's law will expire around 2020
- **FPGAs** are programmable hardware circuits
- FPGAs work well with parallelism and custom data ranges
- Use a combination of CPU and FPGA
- HLS helps us to program FPGAs in a timely matter
- Loop unrolling / Pipelining are two possible optimizations
- Reduce communication between CPU and FPGA
- Use fixed floating point operations if possible

Homework (mandatory!!)

Implement backpropagation in C/C++ for the following network:

Input: 784 (MNIST)

■ Hidden: 300, ReLu activation

Output: 10, sigmoid, MSE

Important 1: You will also need a CSV reader in C/C++
Important 2: Statically allocate all the memory needed - no
malloc/new

Note: Expected accuracy is around 92%

This is mandatory: We will put parts of this network on the

FPGA next session!

Homework (also mandatory!!)

What are your projects going to be? It should include

- preprocessing of data
- neural network architecture

- model training
- FPGA usage

Homework (also mandatory!!)

What are your projects going to be? It should include

preprocessing of data

model training

neural network architecture

FPGA usage

Important: You are free to choose your focus

Example 1: Focus on fast implementation for fully connected / convolution on FPGA. Tests mainly on MNIST

Example 2: Focus on Cats-Vs-Dogs data set. Use existing framework and do a lot of pre-processing / model training

Example 3: Focus on integration of FPGA. Use pre-trained model and compute inference on FPGA

Please: Ask me for help / advice!