
DeepLearning on FPGAs
Introduction to Deep Learning

Sebastian Buschjäger

Technische Universität Dortmund - Fakultät Informatik - Lehrstuhl 8

October 21, 2017

1



Recap Computer Science Approach

Technical Problem

Mathematical Method

Algorithm

Implementation

Classification X

Perceptron X

Simple learning rule X

System and language X

DeepLearning on FPGAs 2



Recap Data Mining

Important concepts:

Classification is one data mining task

Training data is used to define and solve the task

A Method is a general approach / idea to solve a task

A algorithm is a way to realise a method

A model forms the extracted knowledge from data

Accuracy measures the model quality given the data

DeepLearning on FPGAs 3



Recap Perceptron classifier

A perceptron is a linear classifier f : Rd → {0, 1} with

f̂(~x) =

{
+1 if

∑d
i=1wi · xi ≥ b

0 else

For learning

1: ~w = rand(1, . . . , d+ 1)
2: while ERROR do
3: for (~xi, yi) ∈ D do
4: ~w = ~w + α · ~xi · (yi − f̂(~xi))
5: end for
6: end while

DeepLearning on FPGAs 4



Homework
So Who did the homework?

And How good was your prediction?

Some of my results

0 vs 1: 99.9% accuracy

1 vs 2: 98.6% accuracy

3 vs 6: 98.8% accuracy

5 vs 6: 94.6% accuracy

8 vs 9: 97.4% accuracy

Runtime ∼ 3s per model with 100 runs over data
Machine Laptop with Intel i7-4600U @ 2.10GHz, 8GB RAM
Tip Compile with -O3 -march -mnative

DeepLearning on FPGAs 5



Homework
So Who did the homework?
And How good was your prediction?

Some of my results

0 vs 1: 99.9% accuracy

1 vs 2: 98.6% accuracy

3 vs 6: 98.8% accuracy

5 vs 6: 94.6% accuracy

8 vs 9: 97.4% accuracy

Runtime ∼ 3s per model with 100 runs over data
Machine Laptop with Intel i7-4600U @ 2.10GHz, 8GB RAM
Tip Compile with -O3 -march -mnative

DeepLearning on FPGAs 5



Homework
So Who did the homework?
And How good was your prediction?

Some of my results

0 vs 1: 99.9% accuracy

1 vs 2: 98.6% accuracy

3 vs 6: 98.8% accuracy

5 vs 6: 94.6% accuracy

8 vs 9: 97.4% accuracy

Runtime ∼ 3s per model with 100 runs over data
Machine Laptop with Intel i7-4600U @ 2.10GHz, 8GB RAM
Tip Compile with -O3 -march -mnative

DeepLearning on FPGAs 5



Data Mining Features are important

Fact 1 State space grows exponentially with increasing dimension.
Example X = {1, 2, . . . , 10}

For X 1, there are 10 different observations
For X 2, there are 102 = 100 different observations
For X 3, there are 103 = 1000 different observations . . .

Fact 2 Training data is generated by a noisy real-world process
We usually have no influence on the type of training data
We usually cannot interfere with the real-world process

Thus Training data should be considered incomplete and noisy

DeepLearning on FPGAs 6



Data Mining Features are important

Fact 1 State space grows exponentially with increasing dimension.
Example X = {1, 2, . . . , 10}

For X 1, there are 10 different observations
For X 2, there are 102 = 100 different observations
For X 3, there are 103 = 1000 different observations . . .

Fact 2 Training data is generated by a noisy real-world process
We usually have no influence on the type of training data
We usually cannot interfere with the real-world process

Thus Training data should be considered incomplete and noisy

DeepLearning on FPGAs 6



Data Mining Features are important

Fact 1 State space grows exponentially with increasing dimension.
Example X = {1, 2, . . . , 10}

For X 1, there are 10 different observations
For X 2, there are 102 = 100 different observations
For X 3, there are 103 = 1000 different observations . . .

Fact 2 Training data is generated by a noisy real-world process
We usually have no influence on the type of training data
We usually cannot interfere with the real-world process

Thus Training data should be considered incomplete and noisy

DeepLearning on FPGAs 6



Data Mining Features are important (2)

Wolpert 1996 There is no free lunch
Every method has is advantages and disadvantages
Most methods are able to perfectly learn a given toy data set
Problem occurs with noise, outlier and generalisation

Conclusion All methods are equally good or bad
But Some methods prefer certain representations

Feature Engineering Finding the right representation for data
Reduce dimension? Increase dimension?
Add additional information? Regularities?
Transform data completely?

DeepLearning on FPGAs 7



Data Mining Features are important (2)

Wolpert 1996 There is no free lunch
Every method has is advantages and disadvantages
Most methods are able to perfectly learn a given toy data set
Problem occurs with noise, outlier and generalisation

Conclusion All methods are equally good or bad
But Some methods prefer certain representations

Feature Engineering Finding the right representation for data
Reduce dimension? Increase dimension?
Add additional information? Regularities?
Transform data completely?

DeepLearning on FPGAs 7



Data Mining Features are important (2)

Wolpert 1996 There is no free lunch
Every method has is advantages and disadvantages
Most methods are able to perfectly learn a given toy data set
Problem occurs with noise, outlier and generalisation

Conclusion All methods are equally good or bad
But Some methods prefer certain representations

Feature Engineering Finding the right representation for data
Reduce dimension? Increase dimension?
Add additional information? Regularities?
Transform data completely?

DeepLearning on FPGAs 7



Data Mining Features are important (3)

x1

x2

Raw data without transformation.
Linear model is a bad choice.
Parabolic model would be better.

φ−→
x1

x2

Data transformed with
φ(x1, x2) = (x1, x2 − 0.3 · x21).
Now linear model fits the problem.

DeepLearning on FPGAs 8



Data Mining Features are important (4)

Conclusion: Good features are crucial for good results!
Question: How to get good features?

1 By hand: Domain experts and data miner examine the data
and try different features based on common knowledge.

2 Semi supervised: Data miner examines the data and tries
different similarity functions and classes of methods

3 Unsupervised: Data miner only encodes some assumptions
about regularities into the method.

Note 1: Hand-crafted features give us insight about the process
Note 2: Semi/unsupervised features give us insight about the data
Our focus: Unsupervised feature extraction.

DeepLearning on FPGAs 9



Data Mining Features are important (4)

Conclusion: Good features are crucial for good results!
Question: How to get good features?

1 By hand: Domain experts and data miner examine the data
and try different features based on common knowledge.

2 Semi supervised: Data miner examines the data and tries
different similarity functions and classes of methods

3 Unsupervised: Data miner only encodes some assumptions
about regularities into the method.

Note 1: Hand-crafted features give us insight about the process
Note 2: Semi/unsupervised features give us insight about the data
Our focus: Unsupervised feature extraction.

DeepLearning on FPGAs 9



Data Mining Features are important (4)

Conclusion: Good features are crucial for good results!
Question: How to get good features?

1 By hand: Domain experts and data miner examine the data
and try different features based on common knowledge.

2 Semi supervised: Data miner examines the data and tries
different similarity functions and classes of methods

3 Unsupervised: Data miner only encodes some assumptions
about regularities into the method.

Note 1: Hand-crafted features give us insight about the process
Note 2: Semi/unsupervised features give us insight about the data
Our focus: Unsupervised feature extraction.

DeepLearning on FPGAs 9



Our Goal End-to-End learning

Our focus Unsupervised feature extraction
→ “End-To-End learning”

So far
Deep Learning seems to be the best method

So. . .
What is Deep Learning?

DeepLearning on FPGAs 10



Our Goal End-to-End learning

Our focus Unsupervised feature extraction
→ “End-To-End learning”

So far
Deep Learning seems to be the best method

So. . .
What is Deep Learning?

DeepLearning on FPGAs 10



Deep Learning Basics

Well... its currently one of the big things in AI!

Since 2010: DeepMind learns and plays old Atari games

Since 2012: Google is able to find cats in youtube videos

December 2014: Near real-time translation in Skype

October 2015: AlphaGo beats the European Go champion

October 2015: Tesla deploys Autopilot in their cars

March 2016: AlphaGo beats the Go Worldchampion

June 2016: Facebook introduces DeepText

August 2017: Facebook uses neural-based translation

. . .

DeepLearning on FPGAs 11



Deep Learning Example

DeepLearning on FPGAs 12



Deep Learning Basics

Deep Learning is a branch of Machine Learning dealing with

(Deep) Artificial Neural Networks (ANN)

High Level Feature Processing

Fast Implementations

ANNs are well known! So what’s new about it?

We have more data and more computation power

We have a better understanding of optimization

We use a more engineering-style approach

Our focus now Artificial Neural Networks

DeepLearning on FPGAs 13



Deep Learning Basics

Deep Learning is a branch of Machine Learning dealing with

(Deep) Artificial Neural Networks (ANN)

High Level Feature Processing

Fast Implementations

ANNs are well known! So what’s new about it?

We have more data and more computation power

We have a better understanding of optimization

We use a more engineering-style approach

Our focus now Artificial Neural Networks

DeepLearning on FPGAs 13



Data Mining Model optimization

Important We need some basics about optimization
Recap

~w = ~w + α · ~xi · (yi − f̂(~xi))

So far We formulated an optimization algorithm to find
perceptron weights that minimize classification error

This is a common approach in Data Mining:

Specify model family

Specify optimization procedure

Specify a cost / loss function

Note: Loss function 6= Accuracy
→ The loss function is minimized during learning
→ Accuracy is used to measure the model’s quality after learning

DeepLearning on FPGAs 14



Data Mining Model optimization

Important We need some basics about optimization
Recap

~w = ~w + α · ~xi · (yi − f̂(~xi))

So far We formulated an optimization algorithm to find
perceptron weights that minimize classification error

This is a common approach in Data Mining:

Specify model family

Specify optimization procedure

Specify a cost / loss function

Note: Loss function 6= Accuracy
→ The loss function is minimized during learning
→ Accuracy is used to measure the model’s quality after learning

DeepLearning on FPGAs 14



Data Mining Model optimization

Important We need some basics about optimization
Recap

~w = ~w + α · ~xi · (yi − f̂(~xi))

So far We formulated an optimization algorithm to find
perceptron weights that minimize classification error

This is a common approach in Data Mining:

Specify model family

Specify optimization procedure

Specify a cost / loss function

Note: Loss function 6= Accuracy
→ The loss function is minimized during learning
→ Accuracy is used to measure the model’s quality after learning

DeepLearning on FPGAs 14



Data Mining Model optimization

Important We need some basics about optimization
Recap

~w = ~w + α · ~xi · (yi − f̂(~xi))

So far We formulated an optimization algorithm to find
perceptron weights that minimize classification error

This is a common approach in Data Mining:

Specify model family

Specify optimization procedure

Specify a cost / loss function

Note: Loss function 6= Accuracy
→ The loss function is minimized during learning
→ Accuracy is used to measure the model’s quality after learning

DeepLearning on FPGAs 14



Data Mining Stochastic gradient descent (SGD)

Given

A loss function E, the model parameter ~θ, learning rate αt

Framework

1: ~θ = random()
2: while ERROR do
3: choose random (~x, y) ∈ D
4: ~θ = ~θ − αt · ∂E(x,y)

∂~θ
5: end while

e.g. 100 iterations
e.g. minimum change in θ

(estimated) gradient of loss
depends on θ and (x, y)

DeepLearning on FPGAs 15



Data Mining Stochastic gradient descent (SGD)

Given

A loss function E, the model parameter ~θ, learning rate αt

Framework

1: ~θ = random()
2: while ERROR do
3: choose random (~x, y) ∈ D
4: ~θ = ~θ − αt · ∂E(x,y)

∂~θ
5: end while

e.g. 100 iterations
e.g. minimum change in θ

(estimated) gradient of loss
depends on θ and (x, y)

DeepLearning on FPGAs 15



Data Mining Stochastic gradient descent (SGD)

Given

A loss function E, the model parameter ~θ, learning rate αt

Framework

1: ~θ = random()
2: while ERROR do
3: choose random (~x, y) ∈ D
4: ~θ = ~θ − αt · ∂E(x,y)

∂~θ
5: end while

e.g. 100 iterations
e.g. minimum change in θ

(estimated) gradient of loss
depends on θ and (x, y)

DeepLearning on FPGAs 15



Data Mining Stochastic gradient descent (SGD)

Given

A loss function E, the model parameter ~θ, learning rate αt

Framework

1: ~θ = random()
2: while ERROR do
3: choose random (~x, y) ∈ D
4: ~θ = ~θ − αt · ∂E(x,y)

∂~θ
5: end while

e.g. 100 iterations
e.g. minimum change in θ

(estimated) gradient of loss
depends on θ and (x, y)

DeepLearning on FPGAs 15



Data Mining Perceptron Learning

Observation We implicitly did this for the perceptron

1: ~w = rand(1, . . . , d+ 1)
2: while ERROR do
3: for (~x, y) ∈ D do
4: ~w = ~w + α · ~x · (y − f̂(~x))
5: end for
6: end while

So The perceptron works well and follows a general framework

DeepLearning on FPGAs 16



Data Mining The XOR Problem

Question What happens if data is not linear separable?

Data linear separable, but noisy

?

Data not linear separable

Answer Algorithm will never converge, thus

Use fixed number of iterations

Introduce some acceptable error margin

DeepLearning on FPGAs 17



Data Mining The XOR Problem

Question What happens if data is not linear separable?

Data linear separable, but noisy

?

Data not linear separable

Answer Algorithm will never converge, thus

Use fixed number of iterations

Introduce some acceptable error margin

DeepLearning on FPGAs 17



Data Mining The XOR Problem

Question What happens if data is not linear separable?

Data linear separable, but noisy

?

Data not linear separable

Answer Algorithm will never converge, thus

Use fixed number of iterations

Introduce some acceptable error margin

DeepLearning on FPGAs 17



Data Mining Idea - use more perceptrons

Recap (Hand crafted) Feature transformation always possible
But What about an automatic way?
Rosenblatt 1961
Use multiple perceptrons → Multi-Layer Perceptron (MLP)

x1

x2

...

xd

input layer hidden layer output layer

Biological view Geometrical view

DeepLearning on FPGAs 18



Data Mining MLP learning

Goal We need to learn weights w / bias b for each perceptron
So far We intuitively derived a learning algorithm

Now Follow stochastic gradient descent algorithm
Loss function (MSE)

`(D, ŵ) =

√√√√ 1

N

N∑

i=1

(
yi − f̂(~xi)

)2

Observation We need to take the derivative of the loss function
But Loss functions looks complicated
Observation 1 Square-Root is monotone
Observation 2 Constant factor does not change optimization

DeepLearning on FPGAs 19



Data Mining MLP learning

Goal We need to learn weights w / bias b for each perceptron
So far We intuitively derived a learning algorithm
Now Follow stochastic gradient descent algorithm
Loss function (MSE)

`(D, ŵ) =

√√√√ 1

N

N∑

i=1

(
yi − f̂(~xi)

)2

Observation We need to take the derivative of the loss function

But Loss functions looks complicated
Observation 1 Square-Root is monotone
Observation 2 Constant factor does not change optimization

DeepLearning on FPGAs 19



Data Mining MLP learning

Goal We need to learn weights w / bias b for each perceptron
So far We intuitively derived a learning algorithm
Now Follow stochastic gradient descent algorithm
Loss function (MSE)

`(D, ŵ) =

√√√√ 1

N

N∑

i=1

(
yi − f̂(~xi)

)2

Observation We need to take the derivative of the loss function
But Loss functions looks complicated
Observation 1 Square-Root is monotone
Observation 2 Constant factor does not change optimization

DeepLearning on FPGAs 19



Data Mining MLP learning (2)

New loss function

`(D, ŵ) =
1

2

(
yi − f̂(~xi)

)2

∇ŵ`(D, ŵ) =
1

2
2(yi − f̂(~xi))

∂f̂(~xi)

∂ŵ

Observation We need to compute derivative ∂f̂(~xi)
∂ŵ

f̂(~x) =

{
+1 if

∑d
i=1wi · xi + b ≥ 0

0 else

Observation f is not continuous in 0 (it makes a step)
Thus Impossible to derive ∇ŵ`(D, w) in 0, because f is not
differentiable in 0!

DeepLearning on FPGAs 20



Data Mining MLP learning (2)

New loss function

`(D, ŵ) =
1

2

(
yi − f̂(~xi)

)2

∇ŵ`(D, ŵ) =
1

2
2(yi − f̂(~xi))

∂f̂(~xi)

∂ŵ

Observation We need to compute derivative ∂f̂(~xi)
∂ŵ

f̂(~x) =

{
+1 if

∑d
i=1wi · xi + b ≥ 0

0 else

Observation f is not continuous in 0 (it makes a step)
Thus Impossible to derive ∇ŵ`(D, w) in 0, because f is not
differentiable in 0!

DeepLearning on FPGAs 20



Data Mining MLP learning (2)

New loss function

`(D, ŵ) =
1

2

(
yi − f̂(~xi)

)2

∇ŵ`(D, ŵ) =
1

2
2(yi − f̂(~xi))

∂f̂(~xi)

∂ŵ

Observation We need to compute derivative ∂f̂(~xi)
∂ŵ

f̂(~x) =

{
+1 if

∑d
i=1wi · xi + b ≥ 0

0 else

Observation f is not continuous in 0 (it makes a step)
Thus Impossible to derive ∇ŵ`(D, w) in 0, because f is not
differentiable in 0!

DeepLearning on FPGAs 20



Data Mining MLP learning (2)

New loss function

`(D, ŵ) =
1

2

(
yi − f̂(~xi)

)2

∇ŵ`(D, ŵ) =
1

2
2(yi − f̂(~xi))

∂f̂(~xi)

∂ŵ

Observation We need to compute derivative ∂f̂(~xi)
∂ŵ

f̂(~x) =

{
+1 if

∑d
i=1wi · xi + b ≥ 0

0 else

Observation f is not continuous in 0 (it makes a step)
Thus Impossible to derive ∇ŵ`(D, w) in 0, because f is not
differentiable in 0!

DeepLearning on FPGAs 20



Data Mining MLP activation function

Another problem Combinations of linear functions are still linear

f(x) = 5x+ 3

g(x) = 10x1 − 5x2

f(g(x)) = 5(10x1 − 5x2) + 3 = 50x1 − 25x2 + 3

Solution
We need to make f continuous
We need to introduce some non-linearity

Observation
The input of a perceptron depends on the output of previous one

Thus
Apply non-linear activation function to perceptron output

DeepLearning on FPGAs 21



Data Mining MLP activation function

Another problem Combinations of linear functions are still linear

f(x) = 5x+ 3

g(x) = 10x1 − 5x2

f(g(x)) = 5(10x1 − 5x2) + 3 = 50x1 − 25x2 + 3

Solution
We need to make f continuous
We need to introduce some non-linearity

Observation
The input of a perceptron depends on the output of previous one

Thus
Apply non-linear activation function to perceptron output

DeepLearning on FPGAs 21



Data Mining MLP activation function (2)

Bonus This seems to be a little closer to real neurons
Constraint Activation should be easy to compute

Idea Use sigmoid function

x

y

−4 −3 −2 −1 1 2 3 4

1

σ(z) =
1

1 + e−β·z
, β ∈ R>0

Note β controls slope around 0
DeepLearning on FPGAs 22



Data Mining Sigmoid derivative

Given σ(z) = 1
1+e−β·z

, β ∈ R>0

Derivative

∂σ(z)

∂z
=

∂

∂z

(
1 + e−βz

)−1
= (−1)

(
1 + e−βz

)−2
(−β)e−βz

=
βe−βz

(1 + e−βz)
2 = β

e−βz

1 + e−βz
1

1 + e−βz

= β
e−βz + 1− 1

1 + e−βz
1

1 + e−βz

= β

(
1 + e−βz

1 + e−βz
− 1

1 + e−βz

)
1

1 + e−βz

= β(1− σ(z))σ(z)

DeepLearning on FPGAs 23



Data Mining Sigmoid derivative

Given σ(z) = 1
1+e−β·z

, β ∈ R>0

Derivative

∂σ(z)

∂z
=

∂

∂z

(
1 + e−βz

)−1
= (−1)

(
1 + e−βz

)−2
(−β)e−βz

=
βe−βz

(1 + e−βz)
2 = β

e−βz

1 + e−βz
1

1 + e−βz

= β
e−βz + 1− 1

1 + e−βz
1

1 + e−βz

= β

(
1 + e−βz

1 + e−βz
− 1

1 + e−βz

)
1

1 + e−βz

= β(1− σ(z))σ(z)

DeepLearning on FPGAs 23



Data Mining Sigmoid derivative

Given σ(z) = 1
1+e−β·z

, β ∈ R>0

Derivative

∂σ(z)

∂z
=

∂

∂z

(
1 + e−βz

)−1
= (−1)

(
1 + e−βz

)−2
(−β)e−βz

=
βe−βz

(1 + e−βz)
2 = β

e−βz

1 + e−βz
1

1 + e−βz

= β
e−βz + 1− 1

1 + e−βz
1

1 + e−βz

= β

(
1 + e−βz

1 + e−βz
− 1

1 + e−βz

)
1

1 + e−βz

= β(1− σ(z))σ(z)

DeepLearning on FPGAs 23



Data Mining Sigmoid derivative

Given σ(z) = 1
1+e−β·z

, β ∈ R>0

Derivative

∂σ(z)

∂z
=

∂

∂z

(
1 + e−βz

)−1
= (−1)

(
1 + e−βz

)−2
(−β)e−βz

=
βe−βz

(1 + e−βz)
2 = β

e−βz

1 + e−βz
1

1 + e−βz

= β
e−βz + 1− 1

1 + e−βz
1

1 + e−βz

= β

(
1 + e−βz

1 + e−βz
− 1

1 + e−βz

)
1

1 + e−βz

= β(1− σ(z))σ(z)

DeepLearning on FPGAs 23



Data Mining Sigmoid derivative

Given σ(z) = 1
1+e−β·z

, β ∈ R>0

Derivative

∂σ(z)

∂z
=

∂

∂z

(
1 + e−βz

)−1
= (−1)

(
1 + e−βz

)−2
(−β)e−βz

=
βe−βz

(1 + e−βz)
2 = β

e−βz

1 + e−βz
1

1 + e−βz

= β
e−βz + 1− 1

1 + e−βz
1

1 + e−βz

= β

(
1 + e−βz

1 + e−βz
− 1

1 + e−βz

)
1

1 + e−βz

= β(1− σ(z))σ(z)

DeepLearning on FPGAs 23



Data Mining Sigmoid derivative

Given σ(z) = 1
1+e−β·z

, β ∈ R>0

Derivative

∂σ(z)

∂z
=

∂

∂z

(
1 + e−βz

)−1
= (−1)

(
1 + e−βz

)−2
(−β)e−βz

=
βe−βz

(1 + e−βz)
2 = β

e−βz

1 + e−βz
1

1 + e−βz

= β
e−βz + 1− 1

1 + e−βz
1

1 + e−βz

= β

(
1 + e−βz

1 + e−βz
− 1

1 + e−βz

)
1

1 + e−βz

= β(1− σ(z))σ(z)

DeepLearning on FPGAs 23



Data Mining MLP activation function

For inference We compute σ(z)
For training We compute βσ(z)(1− σ(z))
Thus Store activation σ(z) for fast computation

Note Binary classification assumes Y = {0,+1}
Thus Output perceptron also needs sigmoid activation
But For different labels (e.g. {−1,+1}) use another activation

Still
We need to compute ∂E(x,y)

∂w
(l)
i,j

and ∂E(x,y)

∂b
(l)
j

Thus We need a more notation

DeepLearning on FPGAs 24



Data Mining MLP activation function

For inference We compute σ(z)
For training We compute βσ(z)(1− σ(z))
Thus Store activation σ(z) for fast computation

Note Binary classification assumes Y = {0,+1}
Thus Output perceptron also needs sigmoid activation
But For different labels (e.g. {−1,+1}) use another activation

Still
We need to compute ∂E(x,y)

∂w
(l)
i,j

and ∂E(x,y)

∂b
(l)
j

Thus We need a more notation

DeepLearning on FPGAs 24



Data Mining MLP activation function

For inference We compute σ(z)
For training We compute βσ(z)(1− σ(z))
Thus Store activation σ(z) for fast computation

Note Binary classification assumes Y = {0,+1}
Thus Output perceptron also needs sigmoid activation
But For different labels (e.g. {−1,+1}) use another activation

Still
We need to compute ∂E(x,y)

∂w
(l)
i,j

and ∂E(x,y)

∂b
(l)
j

Thus We need a more notation

DeepLearning on FPGAs 24



MLPs A more detailed view

x1

x2

...

xd

...

i

...

...

j

...

bj
w

(l+1)
ij

M(l) M(l+1)

l l + 1

output f
(l)
i

ŷ

w
(l+1)
i,j =̂ Weight from neuron i in layer l to neuron j in layer l + 1

f
(l+1)
j = h(

∑M(l)

i=0 w
(l+1)
i,j f

(l)
i + b

(l+1)
j )

DeepLearning on FPGAs 25



Towards learning MLPs

Goal
We need to compute ∂E(x,y)

∂w
(l)
i,j

and ∂E(x,y)

∂b
(l)
j

Recap Chain-Rule

∂

∂x
(3x+ 5)2 = 2 · (3x+ 5) · 3 = 6(3x+ 5)

More formally
Given two functions f : Rm → R and g : Rk → Rm. Let ~u = g(~x)
and ~x ∈ Rk:

∂f(g(~x))

∂xi
=
∂f(~u)

∂xi
=

m∑

l=1

∂f(~u)

∂ul
· ∂ul
∂xi

DeepLearning on FPGAs 26



Towards learning MLPs

Goal
We need to compute ∂E(x,y)

∂w
(l)
i,j

and ∂E(x,y)

∂b
(l)
j

Recap Chain-Rule

∂

∂x
(3x+ 5)2 =

2 · (3x+ 5) · 3 = 6(3x+ 5)

More formally
Given two functions f : Rm → R and g : Rk → Rm. Let ~u = g(~x)
and ~x ∈ Rk:

∂f(g(~x))

∂xi
=
∂f(~u)

∂xi
=

m∑

l=1

∂f(~u)

∂ul
· ∂ul
∂xi

DeepLearning on FPGAs 26



Towards learning MLPs

Goal
We need to compute ∂E(x,y)

∂w
(l)
i,j

and ∂E(x,y)

∂b
(l)
j

Recap Chain-Rule

∂

∂x
(3x+ 5)2 = 2 · (3x+ 5) · 3

= 6(3x+ 5)

More formally
Given two functions f : Rm → R and g : Rk → Rm. Let ~u = g(~x)
and ~x ∈ Rk:

∂f(g(~x))

∂xi
=
∂f(~u)

∂xi
=

m∑

l=1

∂f(~u)

∂ul
· ∂ul
∂xi

DeepLearning on FPGAs 26



Towards learning MLPs

Goal
We need to compute ∂E(x,y)

∂w
(l)
i,j

and ∂E(x,y)

∂b
(l)
j

Recap Chain-Rule

∂

∂x
(3x+ 5)2 = 2 · (3x+ 5) · 3 = 6(3x+ 5)

More formally
Given two functions f : Rm → R and g : Rk → Rm. Let ~u = g(~x)
and ~x ∈ Rk:

∂f(g(~x))

∂xi
=
∂f(~u)

∂xi
=

m∑

l=1

∂f(~u)

∂ul
· ∂ul
∂xi

DeepLearning on FPGAs 26



Towards learning MLPs

Goal
We need to compute ∂E(x,y)

∂w
(l)
i,j

and ∂E(x,y)

∂b
(l)
j

Recap Chain-Rule

∂

∂x
(3x+ 5)2 = 2 · (3x+ 5) · 3 = 6(3x+ 5)

More formally
Given two functions f : Rm → R and g : Rk → Rm. Let ~u = g(~x)
and ~x ∈ Rk:

∂f(g(~x))

∂xi
=
∂f(~u)

∂xi
=

m∑

l=1

∂f(~u)

∂ul
· ∂ul
∂xi

DeepLearning on FPGAs 26



Towards backpropagation (1)

Goal
We need to compute ∂E(x,y)

∂w
(l)
i,j

and ∂E(x,y)

∂b
(l)
j

Recall
y
(l+1)
j =

∑M(l)

i=0 w
(l+1)
i,j f

(l)
i + b

(l+1)
j and f

(l+1)
j = h

(
y
(l+1)
j

)

Observation
E depends on all fLj , which depends on fL−1j . . .

∂E

∂wli,j
=
∂E

∂f lj
·
∂f lj

∂ylj
·
∂ylj

∂wli,j

Contains all derivatives
from L to l

DeepLearning on FPGAs 27



Towards backpropagation (1)

Goal
We need to compute ∂E(x,y)

∂w
(l)
i,j

and ∂E(x,y)

∂b
(l)
j

Recall
y
(l+1)
j =

∑M(l)

i=0 w
(l+1)
i,j f

(l)
i + b

(l+1)
j and f

(l+1)
j = h

(
y
(l+1)
j

)

Observation
E depends on all fLj , which depends on fL−1j . . .

∂E

∂wli,j
=
∂E

∂f lj
·
∂f lj

∂ylj
·
∂ylj

∂wli,j

Contains all derivatives
from L to l

DeepLearning on FPGAs 27



Towards backpropagation (1)

Goal
We need to compute ∂E(x,y)

∂w
(l)
i,j

and ∂E(x,y)

∂b
(l)
j

Recall
y
(l+1)
j =

∑M(l)

i=0 w
(l+1)
i,j f

(l)
i + b

(l+1)
j and f

(l+1)
j = h

(
y
(l+1)
j

)

Observation
E depends on all fLj , which depends on fL−1j . . .

∂E

∂wli,j
=
∂E

∂f lj
·
∂f lj

∂ylj
·
∂ylj

∂wli,j

Contains all derivatives
from L to l

DeepLearning on FPGAs 27



Towards backpropagation (1)

Goal
We need to compute ∂E(x,y)

∂w
(l)
i,j

and ∂E(x,y)

∂b
(l)
j

Recall
y
(l+1)
j =

∑M(l)

i=0 w
(l+1)
i,j f

(l)
i + b

(l+1)
j and f

(l+1)
j = h

(
y
(l+1)
j

)

Observation
E depends on all fLj , which depends on fL−1j . . .

∂E

∂wli,j
=
∂E

∂f lj
·
∂f lj

∂ylj
·
∂ylj

∂wli,j

Contains all derivatives
from L to l

DeepLearning on FPGAs 27



Backpropagation for wl
i,j

Recall y
(l+1)
j =

∑M(l)

i=0 w
(l+1)
i,j f

(l)
i + b

(l+1)
j and f

(l+1)
j = h

(
y
(l+1)
j

)

∂E

∂wli,j
=
∂E

∂f lj
·
∂f lj

∂ylj
·
∂ylj

∂wli,j
=



M(l+1)∑

i=0

∂E

∂f
(l+1)
i

· ∂f
(l+1)
i

∂y
(l+1)
i

· ∂y
(l+1)
i

∂f lj


 ∂f lj

∂ylj
·
∂ylj

∂wli,j

=



M(l+1)∑

i=0

δ
(l+1)
i · w(l+1)

i,j


 ∂f lj

∂ylj
· f (l−1)i

recursion with δ
(l+1)
i = ∂E

∂f
(l+1)
i

∂f
(l+1)
i

∂y
(l+1)
i

with δ
(l)
j =

(∑M(l+1)

i=0 δ
(l+1)
i · w(l+1)

i,j

)
· ∂f

l
j

∂ylj

DeepLearning on FPGAs 28



Backpropagation for wl
i,j

Recall y
(l+1)
j =

∑M(l)

i=0 w
(l+1)
i,j f

(l)
i + b

(l+1)
j and f

(l+1)
j = h

(
y
(l+1)
j

)

∂E

∂wli,j
=

∂E

∂f lj
·
∂f lj

∂ylj
·
∂ylj

∂wli,j
=



M(l+1)∑

i=0

∂E

∂f
(l+1)
i

· ∂f
(l+1)
i

∂y
(l+1)
i

· ∂y
(l+1)
i

∂f lj


 ∂f lj

∂ylj
·
∂ylj

∂wli,j

=



M(l+1)∑

i=0

δ
(l+1)
i · w(l+1)

i,j


 ∂f lj

∂ylj
· f (l−1)i

recursion with δ
(l+1)
i = ∂E

∂f
(l+1)
i

∂f
(l+1)
i

∂y
(l+1)
i

with δ
(l)
j =

(∑M(l+1)

i=0 δ
(l+1)
i · w(l+1)

i,j

)
· ∂f

l
j

∂ylj

DeepLearning on FPGAs 28



Backpropagation for wl
i,j

Recall y
(l+1)
j =

∑M(l)

i=0 w
(l+1)
i,j f

(l)
i + b

(l+1)
j and f

(l+1)
j = h

(
y
(l+1)
j

)

∂E

∂wli,j
=
∂E

∂f lj
·
∂f lj

∂ylj
·
∂ylj

∂wli,j
=



M(l+1)∑

i=0

∂E

∂f
(l+1)
i

· ∂f
(l+1)
i

∂y
(l+1)
i

· ∂y
(l+1)
i

∂f lj


 ∂f lj

∂ylj
·
∂ylj

∂wli,j

=



M(l+1)∑

i=0

δ
(l+1)
i · w(l+1)

i,j


 ∂f lj

∂ylj
· f (l−1)i

recursion with δ
(l+1)
i = ∂E

∂f
(l+1)
i

∂f
(l+1)
i

∂y
(l+1)
i

with δ
(l)
j =

(∑M(l+1)

i=0 δ
(l+1)
i · w(l+1)

i,j

)
· ∂f

l
j

∂ylj

DeepLearning on FPGAs 28



Backpropagation for wl
i,j

Recall y
(l+1)
j =

∑M(l)

i=0 w
(l+1)
i,j f

(l)
i + b

(l+1)
j and f

(l+1)
j = h

(
y
(l+1)
j

)

∂E

∂wli,j
=
∂E

∂f lj
·
∂f lj

∂ylj
·
∂ylj

∂wli,j
=



M(l+1)∑

i=0

∂E

∂f
(l+1)
i

· ∂f
(l+1)
i

∂y
(l+1)
i

· ∂y
(l+1)
i

∂f lj


 ∂f lj

∂ylj
·
∂ylj

∂wli,j

=



M(l+1)∑

i=0

δ
(l+1)
i · w(l+1)

i,j


 ∂f lj

∂ylj
· f (l−1)i

recursion with δ
(l+1)
i = ∂E

∂f
(l+1)
i

∂f
(l+1)
i

∂y
(l+1)
i

with δ
(l)
j =

(∑M(l+1)

i=0 δ
(l+1)
i · w(l+1)

i,j

)
· ∂f

l
j

∂ylj

DeepLearning on FPGAs 28



Backpropagation for wl
i,j

Recall y
(l+1)
j =

∑M(l)

i=0 w
(l+1)
i,j f

(l)
i + b

(l+1)
j and f

(l+1)
j = h

(
y
(l+1)
j

)

∂E

∂wli,j
=
∂E

∂f lj
·
∂f lj

∂ylj
·
∂ylj

∂wli,j
=



M(l+1)∑

i=0

∂E

∂f
(l+1)
i

· ∂f
(l+1)
i

∂y
(l+1)
i

· ∂y
(l+1)
i

∂f lj


 ∂f lj

∂ylj
·
∂ylj

∂wli,j

=



M(l+1)∑

i=0

δ
(l+1)
i · w(l+1)

i,j


 ∂f lj

∂ylj
· f (l−1)i

recursion with δ
(l+1)
i = ∂E

∂f
(l+1)
i

∂f
(l+1)
i

∂y
(l+1)
i

with δ
(l)
j =

(∑M(l+1)

i=0 δ
(l+1)
i · w(l+1)

i,j

)
· ∂f

l
j

∂ylj

DeepLearning on FPGAs 28



Backpropagation for wl
i,j

Recall y
(l+1)
j =

∑M(l)

i=0 w
(l+1)
i,j f

(l)
i + b

(l+1)
j and f

(l+1)
j = h

(
y
(l+1)
j

)

∂E

∂wli,j
=
∂E

∂f lj
·
∂f lj

∂ylj
·
∂ylj

∂wli,j
=



M(l+1)∑

i=0

∂E

∂f
(l+1)
i

· ∂f
(l+1)
i

∂y
(l+1)
i

· ∂y
(l+1)
i

∂f lj


 ∂f lj

∂ylj
·
∂ylj

∂wli,j

=



M(l+1)∑

i=0

δ
(l+1)
i · ∂y

(l+1)
i

∂f lj


 ∂f lj

∂ylj
·
∂ylj

∂wli,j

=



M(l+1)∑

i=0

δ
(l+1)
i · w(l+1)

i,j


 ∂f lj

∂ylj
· f (l−1)i

recursion with δ
(l+1)
i = ∂E

∂f
(l+1)
i

∂f
(l+1)
i

∂y
(l+1)
i

with δ
(l)
j =

(∑M(l+1)

i=0 δ
(l+1)
i · w(l+1)

i,j

)
· ∂f

l
j

∂ylj

DeepLearning on FPGAs 28



Backpropagation for wl
i,j

Recall y
(l+1)
j =

∑M(l)

i=0 w
(l+1)
i,j f

(l)
i + b

(l+1)
j and f

(l+1)
j = h

(
y
(l+1)
j

)

∂E

∂wli,j
=
∂E

∂f lj
·
∂f lj

∂ylj
·
∂ylj

∂wli,j
=



M(l+1)∑

i=0

∂E

∂f
(l+1)
i

· ∂f
(l+1)
i

∂y
(l+1)
i

· ∂y
(l+1)
i

∂f lj


 ∂f lj

∂ylj
·
∂ylj

∂wli,j

=



M(l+1)∑

i=0

δ
(l+1)
i · w(l+1)

i,j


 ∂f lj

∂ylj
·
∂ylj

∂wli,j

=



M(l+1)∑

i=0

δ
(l+1)
i · w(l+1)

i,j


 ∂f lj

∂ylj
· f (l−1)i

recursion with δ
(l+1)
i = ∂E

∂f
(l+1)
i

∂f
(l+1)
i

∂y
(l+1)
i

with δ
(l)
j =

(∑M(l+1)

i=0 δ
(l+1)
i · w(l+1)

i,j

)
· ∂f

l
j

∂ylj

DeepLearning on FPGAs 28



Backpropagation for wl
i,j

Recall y
(l+1)
j =

∑M(l)

i=0 w
(l+1)
i,j f

(l)
i + b

(l+1)
j and f

(l+1)
j = h

(
y
(l+1)
j

)

∂E

∂wli,j
=
∂E

∂f lj
·
∂f lj

∂ylj
·
∂ylj

∂wli,j
=



M(l+1)∑

i=0

∂E

∂f
(l+1)
i

· ∂f
(l+1)
i

∂y
(l+1)
i

· ∂y
(l+1)
i

∂f lj


 ∂f lj

∂ylj
·
∂ylj

∂wli,j

=



M(l+1)∑

i=0

δ
(l+1)
i · w(l+1)

i,j


 ∂f lj

∂ylj
· f (l−1)i

recursion with δ
(l+1)
i = ∂E

∂f
(l+1)
i

∂f
(l+1)
i

∂y
(l+1)
i

with δ
(l)
j =

(∑M(l+1)

i=0 δ
(l+1)
i · w(l+1)

i,j

)
· ∂f

l
j

∂ylj

DeepLearning on FPGAs 28



Backpropagation for wl
i,j

Recall y
(l+1)
j =

∑M(l)

i=0 w
(l+1)
i,j f

(l)
i + b

(l+1)
j and f

(l+1)
j = h

(
y
(l+1)
j

)

∂E

∂wli,j
=
∂E

∂f lj
·
∂f lj

∂ylj
·
∂ylj

∂wli,j
=



M(l+1)∑

i=0

∂E

∂f
(l+1)
i

· ∂f
(l+1)
i

∂y
(l+1)
i

· ∂y
(l+1)
i

∂f lj


 ∂f lj

∂ylj
·
∂ylj

∂wli,j

=



M(l+1)∑

i=0

δ
(l+1)
i · w(l+1)

i,j


 ∂f lj

∂ylj
· f (l−1)i = δ

(l)
j · f

(l−1)
i

recursion with δ
(l+1)
i = ∂E

∂f
(l+1)
i

∂f
(l+1)
i

∂y
(l+1)
i

with δ
(l)
j =

(∑M(l+1)

i=0 δ
(l+1)
i · w(l+1)

i,j

)
· ∂f

l
j

∂ylj

DeepLearning on FPGAs 28



Backpropagation for blj

Recall y
(l+1)
j =

∑M(l)

i=0 w
(l+1)
i,j f

(l)
i + b

(l+1)
j and f

(l+1)
j = h

(
y
(l+1)
j

)

∂E

∂blj
=
∂E

∂f lj
·
∂f lj

∂ylj
·
∂ylj

∂blj
=



M(l+1)∑

i=0

∂E

∂f
(l+1)
i

· ∂f
(l+1)
i

∂y
(l+1)
i

· ∂y
(l+1)
i

∂f lj


 ∂f lj

∂ylj
·
∂ylj

∂blj

=



M(l+1)∑

i=0

δ
(l+1)
i · w(l+1)

i,j


 ∂f lj

∂ylj
· 1 = δ

(l)
j · 1

recursion with δ
(l+1)
i = ∂E

∂f
(l+1)
i

∂f
(l+1)
i

∂y
(l+1)
i

with δ
(l)
j =

(∑M(l+1)

i=0 δ
(l+1)
i · w(l+1)

i,j

)
· ∂f

l
j

∂ylj

DeepLearning on FPGAs 29



Backpropagation for activation h / loss E

Gradient step

w
(l)
i,j = w

(l)
i,j − α · δ

(l)
j f

(l−1)
i

b
(l)
j = b

(l)
j − α · δ

(l)
j

Recursion

δ
(l−1)
j =

∂h(y
(l−1)
i )

∂y
(l−1)
i

M(l)∑

k=1

δ
(l)
k w

(l)
j,k

δ
(L)
j =

∂E(f
(L)
j )

∂f
(L)
j

·
∂h(y

(L)
j )

∂y
(L)
j

Note Assume L layers in total
DeepLearning on FPGAs 30



Backpropagation Different notation

Notation We used scalar notation so far
Fact Same results can be derived using matrix-vector notation
→ Notation depends on your preferences and background

For us We want to implement backprop. from scratch, thus scalar
notation is closer to our implementation
But Literature usually use matrix-vector notation for compactness

δ(l−1) =
(
W (l)

)T
δ(l) � ∂h(y(l−1))

∂y(l−1)

δ(L) = ∇y(L)`(y(L))� ∂h(y(L))

∂y(L)

vectorial derivative!

Hadamard-product / Schur-product: piecewise multiplication

DeepLearning on FPGAs 31



Backpropagation Different notation

Notation We used scalar notation so far
Fact Same results can be derived using matrix-vector notation
→ Notation depends on your preferences and background

For us We want to implement backprop. from scratch, thus scalar
notation is closer to our implementation
But Literature usually use matrix-vector notation for compactness

δ(l−1) =
(
W (l)

)T
δ(l) � ∂h(y(l−1))

∂y(l−1)

δ(L) = ∇y(L)`(y(L))� ∂h(y(L))

∂y(L)

vectorial derivative!

Hadamard-product / Schur-product: piecewise multiplication

DeepLearning on FPGAs 31



Backpropagation Different notation

Notation We used scalar notation so far
Fact Same results can be derived using matrix-vector notation
→ Notation depends on your preferences and background

For us We want to implement backprop. from scratch, thus scalar
notation is closer to our implementation
But Literature usually use matrix-vector notation for compactness

δ(l−1) =
(
W (l)

)T
δ(l) � ∂h(y(l−1))

∂y(l−1)

δ(L) = ∇y(L)`(y(L))� ∂h(y(L))

∂y(L)

vectorial derivative!

Hadamard-product / Schur-product: piecewise multiplication

DeepLearning on FPGAs 31



Backpropagation Different notation

Notation We used scalar notation so far
Fact Same results can be derived using matrix-vector notation
→ Notation depends on your preferences and background

For us We want to implement backprop. from scratch, thus scalar
notation is closer to our implementation
But Literature usually use matrix-vector notation for compactness

δ(l−1) =
(
W (l)

)T
δ(l) � ∂h(y(l−1))

∂y(l−1)

δ(L) = ∇y(L)`(y(L))� ∂h(y(L))

∂y(L)

vectorial derivative!

Hadamard-product / Schur-product: piecewise multiplication

DeepLearning on FPGAs 31



Backpropagation Some remarks

Observation Backpropagation is a recursive algorithm
Use Dynamic programming for implementation
→ Start with output layer and the go back

Remark 1 We use SGD to optimize a loss function
→ This requires gradient information

Remark 2 We use backpropagation to compute this gradient

Important note
SGD is a general optimization approach
Backpropagation is a general way to compute gradients in directed
acyclic graphs

Remark 3 With Neural Networks we combine both

DeepLearning on FPGAs 32



Backpropagation Some remarks

Observation Backpropagation is a recursive algorithm
Use Dynamic programming for implementation
→ Start with output layer and the go back

Remark 1 We use SGD to optimize a loss function
→ This requires gradient information

Remark 2 We use backpropagation to compute this gradient

Important note
SGD is a general optimization approach
Backpropagation is a general way to compute gradients in directed
acyclic graphs

Remark 3 With Neural Networks we combine both

DeepLearning on FPGAs 32



Backpropagation Some remarks

Observation Backpropagation is a recursive algorithm
Use Dynamic programming for implementation
→ Start with output layer and the go back

Remark 1 We use SGD to optimize a loss function
→ This requires gradient information

Remark 2 We use backpropagation to compute this gradient

Important note
SGD is a general optimization approach
Backpropagation is a general way to compute gradients in directed
acyclic graphs

Remark 3 With Neural Networks we combine both
DeepLearning on FPGAs 32



Backpropagation Some implementation ideas

Observation: Backprop. is independent from activation h and loss `

Thus Implement neural networks layer-wise

Each layer has activation function

Each layer has derivative of activation function

Each layer has weight matrix (either for input or output)

Each layer implements delta computation

Output-layer implements delta computation with loss function

Layers are either connected to each other and recursively call
backprop. or some “control” function performs backprop.

Thus Arbitrary network architectures can be realised without
changing learning algorithm

DeepLearning on FPGAs 33



Backpropagation Some implementation ideas

Observation: Backprop. is independent from activation h and loss `

Thus Implement neural networks layer-wise

Each layer has activation function

Each layer has derivative of activation function

Each layer has weight matrix (either for input or output)

Each layer implements delta computation

Output-layer implements delta computation with loss function

Layers are either connected to each other and recursively call
backprop. or some “control” function performs backprop.

Thus Arbitrary network architectures can be realised without
changing learning algorithm

DeepLearning on FPGAs 33



Backpropagation Some implementation ideas

Observation: Backprop. is independent from activation h and loss `

Thus Implement neural networks layer-wise

Each layer has activation function

Each layer has derivative of activation function

Each layer has weight matrix (either for input or output)

Each layer implements delta computation

Output-layer implements delta computation with loss function

Layers are either connected to each other and recursively call
backprop. or some “control” function performs backprop.

Thus Arbitrary network architectures can be realised without
changing learning algorithm

DeepLearning on FPGAs 33



MLP Some ideas about architectures
Question So what is a good architecture?

Answer Depends on the problem. Usually, architectures for new
problems are published in scientific papers or even as PHD thesis.

Some general ideas

Non-linear activation A network should contain at least one
layer with non-linear activation function for better learning

Sparse activation To prevent over-fitting, only a few neurons
of the network should be active at the same time

Fast convergence The loss function / activation function
should allow a fast convergence in the first few epochs

Feature extraction Combining multiple layers in deeper
networks usually allows (higher) level feature extraction

DeepLearning on FPGAs 34



MLP Some ideas about architectures
Question So what is a good architecture?
Answer Depends on the problem. Usually, architectures for new
problems are published in scientific papers or even as PHD thesis.

Some general ideas

Non-linear activation A network should contain at least one
layer with non-linear activation function for better learning

Sparse activation To prevent over-fitting, only a few neurons
of the network should be active at the same time

Fast convergence The loss function / activation function
should allow a fast convergence in the first few epochs

Feature extraction Combining multiple layers in deeper
networks usually allows (higher) level feature extraction

DeepLearning on FPGAs 34



MLP Some ideas about architectures
Question So what is a good architecture?
Answer Depends on the problem. Usually, architectures for new
problems are published in scientific papers or even as PHD thesis.

Some general ideas

Non-linear activation A network should contain at least one
layer with non-linear activation function for better learning

Sparse activation To prevent over-fitting, only a few neurons
of the network should be active at the same time

Fast convergence The loss function / activation function
should allow a fast convergence in the first few epochs

Feature extraction Combining multiple layers in deeper
networks usually allows (higher) level feature extraction

DeepLearning on FPGAs 34



Data mining From MLP to Deep Learning

Observation

1 perceptron Separates space into two sets

Many perceptrons in 1 layer Identifies convex sets

Many perceptrons in 2 layer Identifies arbitrary sets

Hornik et. al 1989 MLP is a universal approximator
→ Given enough hidden units, a MLP is able to represent any

“well-conditioned” function perfectly
Barron 1993 Worst case needs exponential number of hidden units

But That does not necessarily mean, that we will find it!

Usually we cannot afford exponentially large networks

Learning of ~w might fail due to data or numerical reasons

DeepLearning on FPGAs 35



Data mining From MLP to Deep Learning

Observation

1 perceptron Separates space into two sets

Many perceptrons in 1 layer Identifies convex sets

Many perceptrons in 2 layer Identifies arbitrary sets

Hornik et. al 1989 MLP is a universal approximator
→ Given enough hidden units, a MLP is able to represent any

“well-conditioned” function perfectly

Barron 1993 Worst case needs exponential number of hidden units

But That does not necessarily mean, that we will find it!

Usually we cannot afford exponentially large networks

Learning of ~w might fail due to data or numerical reasons

DeepLearning on FPGAs 35



Data mining From MLP to Deep Learning

Observation

1 perceptron Separates space into two sets

Many perceptrons in 1 layer Identifies convex sets

Many perceptrons in 2 layer Identifies arbitrary sets

Hornik et. al 1989 MLP is a universal approximator
→ Given enough hidden units, a MLP is able to represent any

“well-conditioned” function perfectly
Barron 1993 Worst case needs exponential number of hidden units

But That does not necessarily mean, that we will find it!

Usually we cannot afford exponentially large networks

Learning of ~w might fail due to data or numerical reasons

DeepLearning on FPGAs 35



Data mining From MLP to Deep Learning

Observation

1 perceptron Separates space into two sets

Many perceptrons in 1 layer Identifies convex sets

Many perceptrons in 2 layer Identifies arbitrary sets

Hornik et. al 1989 MLP is a universal approximator
→ Given enough hidden units, a MLP is able to represent any

“well-conditioned” function perfectly
Barron 1993 Worst case needs exponential number of hidden units

But That does not necessarily mean, that we will find it!

Usually we cannot afford exponentially large networks

Learning of ~w might fail due to data or numerical reasons

DeepLearning on FPGAs 35



Deep Learning From MLP to Deep Learning

So... How did Deep Learning become so popular?

Krizhevsky et. al 2012
Trade width for depth
→ Extract features and combine them in later layers

Zhang et. al 2017
O(N + d) weights are enough for sample of size N in d dimensions
→ “One” neuron per sample

But This introduces new challenges

DeepLearning on FPGAs 36



Deep Learning From MLP to Deep Learning

So... How did Deep Learning become so popular?

Krizhevsky et. al 2012
Trade width for depth
→ Extract features and combine them in later layers

Zhang et. al 2017
O(N + d) weights are enough for sample of size N in d dimensions
→ “One” neuron per sample

But This introduces new challenges

DeepLearning on FPGAs 36



Deep Learning From MLP to Deep Learning

So... How did Deep Learning become so popular?

Krizhevsky et. al 2012
Trade width for depth
→ Extract features and combine them in later layers

Zhang et. al 2017
O(N + d) weights are enough for sample of size N in d dimensions
→ “One” neuron per sample

But This introduces new challenges

DeepLearning on FPGAs 36



Deep Learning Vanishing gradients

Observation 1 σ(z) = 1
1+e−β·z

∈ [0, 1]

Observation 2 ∂σ(z)
∂z = σ(z) · (1− σ(z)) ∈ [0, 0.25β]

Observation 3 Errors are multiplied from the next layer

Thus The error tends to become very small after a few layers
Hochreiter et. al 2001 Vanishing gradients

So far No fundamental solution found, but a few suggestions

Change activation function

Exploit different optimization methods

Use more data / carefully adjust stepsizes

Reduce number of parameters / depth of network

DeepLearning on FPGAs 37



Deep Learning Vanishing gradients

Observation 1 σ(z) = 1
1+e−β·z

∈ [0, 1]

Observation 2 ∂σ(z)
∂z = σ(z) · (1− σ(z)) ∈ [0, 0.25β]

Observation 3 Errors are multiplied from the next layer

Thus The error tends to become very small after a few layers
Hochreiter et. al 2001 Vanishing gradients

So far No fundamental solution found, but a few suggestions

Change activation function

Exploit different optimization methods

Use more data / carefully adjust stepsizes

Reduce number of parameters / depth of network

DeepLearning on FPGAs 37



Deep Learning Vanishing gradients

Observation 1 σ(z) = 1
1+e−β·z

∈ [0, 1]

Observation 2 ∂σ(z)
∂z = σ(z) · (1− σ(z)) ∈ [0, 0.25β]

Observation 3 Errors are multiplied from the next layer

Thus The error tends to become very small after a few layers
Hochreiter et. al 2001 Vanishing gradients

So far No fundamental solution found, but a few suggestions

Change activation function

Exploit different optimization methods

Use more data / carefully adjust stepsizes

Reduce number of parameters / depth of network

DeepLearning on FPGAs 37



Deep Learning ReLu activation

Rectified Linear (ReLu)

x

y

−2 −1 1 2

1

2

h(z) =

{
z if z ≥ 0

0 else
= max(0, z)

∂h(z)

∂z
=

{
1 if z ≥ 0

0 else

Note ReLu is not differentiable in z = 0!
But Usually that is not a problem

Practical z = 0 is pretty rare, just use 0 there. It works well

Mathematical There exists a subgradient of h(z) at 0

DeepLearning on FPGAs 38



Deep Learning ReLu activation

Rectified Linear (ReLu)

x

y

−2 −1 1 2

1

2
h(z) =

{
z if z ≥ 0

0 else
= max(0, z)

∂h(z)

∂z
=

{
1 if z ≥ 0

0 else

Note ReLu is not differentiable in z = 0!
But Usually that is not a problem

Practical z = 0 is pretty rare, just use 0 there. It works well

Mathematical There exists a subgradient of h(z) at 0

DeepLearning on FPGAs 38



Deep Learning ReLu activation

Rectified Linear (ReLu)

x

y

−2 −1 1 2

1

2
h(z) =

{
z if z ≥ 0

0 else
= max(0, z)

∂h(z)

∂z
=

{
1 if z ≥ 0

0 else

Note ReLu is not differentiable in z = 0!

But Usually that is not a problem

Practical z = 0 is pretty rare, just use 0 there. It works well

Mathematical There exists a subgradient of h(z) at 0

DeepLearning on FPGAs 38



Deep Learning ReLu activation

Rectified Linear (ReLu)

x

y

−2 −1 1 2

1

2
h(z) =

{
z if z ≥ 0

0 else
= max(0, z)

∂h(z)

∂z
=

{
1 if z ≥ 0

0 else

Note ReLu is not differentiable in z = 0!
But Usually that is not a problem

Practical z = 0 is pretty rare, just use 0 there. It works well

Mathematical There exists a subgradient of h(z) at 0

DeepLearning on FPGAs 38



Deep Learning ReLu activation (2)

Subgradients A gradient shows the direct of the steepest descent
⇒ If a function is not differentiable, it has no steepest descent
⇒ There might be multiple (equally) “steepest descents”

For ReLu We can choose ∂h(z)
∂z

∣∣
z=0

from [0, 1]
Big Note Using a subgradient does not guarantee that our loss
function decreases! We might change weights to the worse!

Nice properties of ReLu

Super-easy forward, backward and derivative computation

Either activates or deactivates a neuron (sparsity)

No vanishing gradients, since error is multiplied by 0 or 1

Still gives network non-linear activation

DeepLearning on FPGAs 39



Deep Learning ReLu activation (2)

Subgradients A gradient shows the direct of the steepest descent
⇒ If a function is not differentiable, it has no steepest descent
⇒ There might be multiple (equally) “steepest descents”

For ReLu We can choose ∂h(z)
∂z

∣∣
z=0

from [0, 1]
Big Note Using a subgradient does not guarantee that our loss
function decreases! We might change weights to the worse!

Nice properties of ReLu

Super-easy forward, backward and derivative computation

Either activates or deactivates a neuron (sparsity)

No vanishing gradients, since error is multiplied by 0 or 1

Still gives network non-linear activation

DeepLearning on FPGAs 39



Deep Learning ReLu activation (2)

Subgradients A gradient shows the direct of the steepest descent
⇒ If a function is not differentiable, it has no steepest descent
⇒ There might be multiple (equally) “steepest descents”

For ReLu We can choose ∂h(z)
∂z

∣∣
z=0

from [0, 1]
Big Note Using a subgradient does not guarantee that our loss
function decreases! We might change weights to the worse!

Nice properties of ReLu

Super-easy forward, backward and derivative computation

Either activates or deactivates a neuron (sparsity)

No vanishing gradients, since error is multiplied by 0 or 1

Still gives network non-linear activation

DeepLearning on FPGAs 39



Deep Learning Loss function

Usually Squared error

E =
1

2

(
y − f (L)

)2
⇒ ∂E

∂f (L)
= −

(
y − f (L)

)

Recall

∂h(z)

∂z
= h(z) · (1− h(z)), δ(L) =

∂E(f (L))

∂f (L)
· ∂h(y(L))

∂y(L)

Thus

δ
(L)
j = −

(
y − f (L)

)
· ∂h(y(L)))

∂y(L)
→ small for sigmoid!

DeepLearning on FPGAs 40



Deep Learning Loss function

Usually Squared error

E =
1

2

(
y − f (L)

)2
⇒ ∂E

∂f (L)
= −

(
y − f (L)

)

Recall

∂h(z)

∂z
= h(z) · (1− h(z)), δ(L) =

∂E(f (L))

∂f (L)
· ∂h(y(L))

∂y(L)

Thus

δ
(L)
j = −

(
y − f (L)

)
· ∂h(y(L)))

∂y(L)
→ small for sigmoid!

DeepLearning on FPGAs 40



Deep Learning Loss function

Usually Squared error

E =
1

2

(
y − f (L)

)2
⇒ ∂E

∂f (L)
= −

(
y − f (L)

)

Recall

∂h(z)

∂z
= h(z) · (1− h(z)), δ(L) =

∂E(f (L))

∂f (L)
· ∂h(y(L))

∂y(L)

Thus

δ
(L)
j = −

(
y − f (L)

)
· ∂h(y(L)))

∂y(L)
→ small for sigmoid!

DeepLearning on FPGAs 40



Deep Learning Loss function (2)

Recall
∂h(z)
∂z = h(z) · (1− h(z)), δ(L) = ∂E(f (L))

∂f (L) · ∂h(y
(L))

∂y(L)

Mohamed et. al 2009
Cross-entropy

E = −
(
y ln

(
f (L)

)
+ (1− y) ln

(
1− f (L)

))
⇒ ∂E

∂f (L) = f (L)−y
(1−f (L))f (L)

Idea View y and ŷ as categorical distribution
Then Minimize distance between both distributions

Nice bonus
δ
(L)
j = f (L)−y

(1−f (L))f (L) · ∂h(y
(L)))

∂y(L) = f (L) − y cancels small sigmoids

Important
Make sure that

∑
fL = 1→ This is called softmax layer

DeepLearning on FPGAs 41



Deep Learning Loss function (2)

Recall
∂h(z)
∂z = h(z) · (1− h(z)), δ(L) = ∂E(f (L))

∂f (L) · ∂h(y
(L))

∂y(L)

Mohamed et. al 2009
Cross-entropy

E = −
(
y ln

(
f (L)

)
+ (1− y) ln

(
1− f (L)

))
⇒ ∂E

∂f (L) = f (L)−y
(1−f (L))f (L)

Idea View y and ŷ as categorical distribution
Then Minimize distance between both distributions

Nice bonus
δ
(L)
j = f (L)−y

(1−f (L))f (L) · ∂h(y
(L)))

∂y(L) = f (L) − y cancels small sigmoids

Important
Make sure that

∑
fL = 1→ This is called softmax layer

DeepLearning on FPGAs 41



Deep Learning Loss function (2)

Recall
∂h(z)
∂z = h(z) · (1− h(z)), δ(L) = ∂E(f (L))

∂f (L) · ∂h(y
(L))

∂y(L)

Mohamed et. al 2009
Cross-entropy

E = −
(
y ln

(
f (L)

)
+ (1− y) ln

(
1− f (L)

))
⇒ ∂E

∂f (L) = f (L)−y
(1−f (L))f (L)

Idea View y and ŷ as categorical distribution
Then Minimize distance between both distributions

Nice bonus
δ
(L)
j = f (L)−y

(1−f (L))f (L) · ∂h(y
(L)))

∂y(L) = f (L) − y cancels small sigmoids

Important
Make sure that

∑
fL = 1→ This is called softmax layer

DeepLearning on FPGAs 41



Deep Learning Loss function (2)

Recall
∂h(z)
∂z = h(z) · (1− h(z)), δ(L) = ∂E(f (L))

∂f (L) · ∂h(y
(L))

∂y(L)

Mohamed et. al 2009
Cross-entropy

E = −
(
y ln

(
f (L)

)
+ (1− y) ln

(
1− f (L)

))
⇒ ∂E

∂f (L) = f (L)−y
(1−f (L))f (L)

Idea View y and ŷ as categorical distribution
Then Minimize distance between both distributions

Nice bonus
δ
(L)
j = f (L)−y

(1−f (L))f (L) · ∂h(y
(L)))

∂y(L) = f (L) − y cancels small sigmoids

Important
Make sure that

∑
fL = 1→ This is called softmax layer

DeepLearning on FPGAs 41



Data Mining Convergence of SGD

Recall We use the SGD framework

1: ~θ = random()
2: while ERROR do
3: choose random (~x, y) ∈ D
4: ~θ = ~θ − αt · ∂E(x,y)

∂~θ
5: end while

Bottou etal. 2017 SGD converges if
1) ∂E(x,y)

∂~θ
= ∇θE[∇θE(D)] is unbiased estimator of true gradient

2) αt → 0, if E is not convex

Note If E is non-convex we may find a local minima

DeepLearning on FPGAs 42



Data Mining Convergence of SGD

Recall We use the SGD framework

1: ~θ = random()
2: while ERROR do
3: choose random (~x, y) ∈ D
4: ~θ = ~θ − αt · ∂E(x,y)

∂~θ
5: end while

Bottou etal. 2017 SGD converges if
1) ∂E(x,y)

∂~θ
= ∇θE[∇θE(D)] is unbiased estimator of true gradient

2) αt → 0, if E is not convex

Note If E is non-convex we may find a local minima

DeepLearning on FPGAs 42



SGD Stepsize

What about the stepsize?

If its to small, you will learn slow (→ more data required)

If its to big, you might miss the optimum (→ bad results)

Thus usually Small α = 0.001− 0.1 with a lot of data
Note We can always reuse our data (multiple passes over dataset)
But Stepsize is problem specific as always!

Practical suggestion Simple heuristic

Try out different stepsizes on small subsample of data

Pick that one that most reduces the loss

Use it for on the full dataset

Sidenote Changing the stepsize while training also possible

DeepLearning on FPGAs 43



SGD Stepsize

What about the stepsize?

If its to small, you will learn slow (→ more data required)

If its to big, you might miss the optimum (→ bad results)

Thus usually Small α = 0.001− 0.1 with a lot of data
Note We can always reuse our data (multiple passes over dataset)
But Stepsize is problem specific as always!

Practical suggestion Simple heuristic

Try out different stepsizes on small subsample of data

Pick that one that most reduces the loss

Use it for on the full dataset

Sidenote Changing the stepsize while training also possible

DeepLearning on FPGAs 43



SGD Stepsize

What about the stepsize?

If its to small, you will learn slow (→ more data required)

If its to big, you might miss the optimum (→ bad results)

Thus usually Small α = 0.001− 0.1 with a lot of data
Note We can always reuse our data (multiple passes over dataset)
But Stepsize is problem specific as always!

Practical suggestion Simple heuristic

Try out different stepsizes on small subsample of data

Pick that one that most reduces the loss

Use it for on the full dataset

Sidenote Changing the stepsize while training also possible
DeepLearning on FPGAs 43



SGD Momentum

∆θ̂old = α1 · ∇θE(D, θ̂old) + α2∆θ̂
old

θ̂new = θ̂old −∆θ̂old

Theoretically more sound

Nesterov 1983 / Sutskever et. al 2013 Nesterov momentum

Tielman et al. 2012 / Graves 2013 RMSProp

Kingma and Lei Ba 2015 Momentum tuned for SGD: ADAM

...and many more AdaGrad, AdaMax, AdaDelta, . . .

Bonus Methods often give heuristic for step-size

DeepLearning on FPGAs 44



SGD Momentum

∆θ̂old = α1 · ∇θE(D, θ̂old) + α2∆θ̂
old

θ̂new = θ̂old −∆θ̂old

Theoretically more sound

Nesterov 1983 / Sutskever et. al 2013 Nesterov momentum

Tielman et al. 2012 / Graves 2013 RMSProp

Kingma and Lei Ba 2015 Momentum tuned for SGD: ADAM

...and many more AdaGrad, AdaMax, AdaDelta, . . .

Bonus Methods often give heuristic for step-size

DeepLearning on FPGAs 44



SGD Utilize parallelism

(Mini-)Batch
Compute derivatives on batch and average direction
→ parallel computation + only 1 parameter update

θ̂new = θ̂old − α · 1

K

K∑

i=0

∇θE(~xi, θ̂
old)

Note That works particularly well on GPUs or FPGAs . . .

DeepLearning on FPGAs 45



SGD Initial solution

For SGD
Need initial solution θ

Common in practice
Bias b = 0, weights wlij ∼ N (0, 0.05)

Bias b = 0, weights wlij ∼ U(−0.05, 0.05)

Why care?

δ(L) =
∂E(f (L))

∂f (L)
· ∂h(y(L))

∂y(L)
= −(yi − fLj )fLj (1− fLj )

δ(L) = 0 if fLj = 0 or fLj = 1

Thus We stuck in local minima if we have a bad initialization

DeepLearning on FPGAs 46



SGD Initial solution

For SGD
Need initial solution θ

Common in practice
Bias b = 0, weights wlij ∼ N (0, 0.05)

Bias b = 0, weights wlij ∼ U(−0.05, 0.05)

Why care?

δ(L) =
∂E(f (L))

∂f (L)
· ∂h(y(L))

∂y(L)
= −(yi − fLj )fLj (1− fLj )

δ(L) = 0 if fLj = 0 or fLj = 1

Thus We stuck in local minima if we have a bad initialization

DeepLearning on FPGAs 46



Deep Learning Slow learning rate

x1

x2

...

xd

...

i

...

...

j

...

bj
w

(l+1)
ij

M(l) M(l+1)

l l + 1

output f
(l)
i

ŷ

Recall
Input of neuron depends on output of previous neurons

DeepLearning on FPGAs 47



Deep Learning Slow learning rate (2)

Observation During training, activations change over time
Thus Input distribution for neurons also change over time

Note This is what we want!
But This prevents us from using larger step-sizes

Ioffe and Szegedy 2015
Internal covariate shift of activations

Idea
Normalize neuron inputs to be zero mean / unit variance

DeepLearning on FPGAs 48



Deep Learning Slow learning rate (2)

Observation During training, activations change over time
Thus Input distribution for neurons also change over time

Note This is what we want!
But This prevents us from using larger step-sizes

Ioffe and Szegedy 2015
Internal covariate shift of activations

Idea
Normalize neuron inputs to be zero mean / unit variance

DeepLearning on FPGAs 48



Deep Learning Slow learning rate (2)

Observation During training, activations change over time
Thus Input distribution for neurons also change over time

Note This is what we want!
But This prevents us from using larger step-sizes

Ioffe and Szegedy 2015
Internal covariate shift of activations

Idea
Normalize neuron inputs to be zero mean / unit variance

DeepLearning on FPGAs 48



Deep Learning Slow learning rate (3)

During training
Given mini batch B = {(ylj)i}{i=1,...,K}, compute

ylj =
1

K

K∑

i=0

(ylj)i

(ylj)i =
(ylj)i − ylj√
σB + ε

Note
During inference there is usually no mini batch
Thus
Estimate ylj over all training data while training

DeepLearning on FPGAs 49



Deep Learning Slow learning rate (3)

During training
Given mini batch B = {(ylj)i}{i=1,...,K}, compute

ylj =
1

K

K∑

i=0

(ylj)i

(ylj)i =
(ylj)i − ylj√
σB + ε

Note
During inference there is usually no mini batch
Thus
Estimate ylj over all training data while training

DeepLearning on FPGAs 49



Data Mining Large models tend to overfit

Common intuition 1
Large models tend to memorize data → no generalization

Han et. al 2016 ∼ 1.2− 140 Million parameters in ≥ 8 layers

Common intuition 2
Training error always decreases, but test error may increase again

Bishop ’95 / Sjörborg & Lijung ’95
Limit SGD to volume around initial solution

Common practice Early stopping
→ Use fixed number of iterations or timesteps

DeepLearning on FPGAs 50



Data Mining Large models tend to overfit

Common intuition 1
Large models tend to memorize data → no generalization

Han et. al 2016 ∼ 1.2− 140 Million parameters in ≥ 8 layers

Common intuition 2
Training error always decreases, but test error may increase again

Bishop ’95 / Sjörborg & Lijung ’95
Limit SGD to volume around initial solution

Common practice Early stopping
→ Use fixed number of iterations or timesteps

DeepLearning on FPGAs 50



Data Mining Large models tend to overfit

Common intuition 1
Large models tend to memorize data → no generalization

Han et. al 2016 ∼ 1.2− 140 Million parameters in ≥ 8 layers

Common intuition 2
Training error always decreases, but test error may increase again

Bishop ’95 / Sjörborg & Lijung ’95
Limit SGD to volume around initial solution

Common practice Early stopping
→ Use fixed number of iterations or timesteps

DeepLearning on FPGAs 50



Data Mining Large models tend to overfit

Common intuition 1
Large models tend to memorize data → no generalization

Han et. al 2016 ∼ 1.2− 140 Million parameters in ≥ 8 layers

Common intuition 2
Training error always decreases, but test error may increase again

Bishop ’95 / Sjörborg & Lijung ’95
Limit SGD to volume around initial solution

Common practice Early stopping
→ Use fixed number of iterations or timesteps

DeepLearning on FPGAs 50



Data Mining Large models tend to overfit

Common intuition 1
Large models tend to memorize data → no generalization

Han et. al 2016 ∼ 1.2− 140 Million parameters in ≥ 8 layers

Common intuition 2
Training error always decreases, but test error may increase again

Bishop ’95 / Sjörborg & Lijung ’95
Limit SGD to volume around initial solution

Common practice Early stopping
→ Use fixed number of iterations or timesteps

DeepLearning on FPGAs 50



Deep Learning Force redundancy

Hinton et al. 2013 / Srivastava et al. 2014 DropOut
Ignore neuron with probability p during forward-pass in training
→ sometimes f lj = 0 during training

Wan et al. 2014: DropConnect
Ignore weight with probability p during forward-pass in training
→ sometimes wli,j = 0 during training

DeepLearning on FPGAs 51



Deep Learning Force redundancy

Hinton et al. 2013 / Srivastava et al. 2014 DropOut
Ignore neuron with probability p during forward-pass in training
→ sometimes f lj = 0 during training

Wan et al. 2014: DropConnect
Ignore weight with probability p during forward-pass in training
→ sometimes wli,j = 0 during training

DeepLearning on FPGAs 51



Summary

Important concepts

For parameter optimization we define a loss function

For parameter optimization we use gradient descent

Neurons have activation functions to ensure non-linearity and
differentiability

Backpropagation is an algorithm to compute the gradient

Deep Learning requires new activation functions

Deep Learning requires new loss functions

Deep Learning sometimes require a lot fine-tuning

DeepLearning on FPGAs 52



Homework
Homework until next meeting

Implement the following network to solve the XOR problem
x1

x2

Implement backpropagation for this network
Try a simple solution first: Hardcode one activation / one loss
function with fixed access to data structures

If you feel comfortable, add new activation / loss functions

Tip 1: Verify that the proposed network uses 9 parameters
Tip 2: Start with α = 1.0 and 10000 training examples
Note: We will later use C, so please use C or a C-like language
Question: How many iterations do you need until convergence?

DeepLearning on FPGAs 53


	Recap
	Deep Learning
	Artificial Neural Networks

