
DeepLearning on FPGAs
Introduction to Data Mining

Sebastian Buschjäger

Technische Universität Dortmund - Fakultät Informatik - Lehrstuhl 8

October 11, 2017

1

Structure of this course

Goals
→ Learning the basics of Data Mining
→ Learning the basics of Deep Learning
→ Learning the basics of FPGA programming

Small lecture-phase in the beginning

Week 1 - 3: Data Mining and Deep Learning

Week 4 - 5: FPGAs and Software

Goal Dogs vs. Cats Kaggle competition1

Image classification on FPGA with Deep Learning

Train classifier on FPGA with Deep Learning

1https://www.kaggle.com/c/dogs-vs-cats-redux-kernels-edition/
DeepLearning on FPGAs 2

Structure of this course

Goals
→ Learning the basics of Data Mining
→ Learning the basics of Deep Learning
→ Learning the basics of FPGA programming

Small lecture-phase in the beginning

Week 1 - 3: Data Mining and Deep Learning

Week 4 - 5: FPGAs and Software

Goal Dogs vs. Cats Kaggle competition1

Image classification on FPGA with Deep Learning

Train classifier on FPGA with Deep Learning

1https://www.kaggle.com/c/dogs-vs-cats-redux-kernels-edition/
DeepLearning on FPGAs 2

Structure of this course

Goals
→ Learning the basics of Data Mining
→ Learning the basics of Deep Learning
→ Learning the basics of FPGA programming

Small lecture-phase in the beginning

Week 1 - 3: Data Mining and Deep Learning

Week 4 - 5: FPGAs and Software

Goal Dogs vs. Cats Kaggle competition1

Image classification on FPGA with Deep Learning

Train classifier on FPGA with Deep Learning

1https://www.kaggle.com/c/dogs-vs-cats-redux-kernels-edition/
DeepLearning on FPGAs 2

The Goal: Predict dogs and cats

DeepLearning on FPGAs 3

Overall Computer Science Approach

Technical Problem

Mathematical Method

Algorithm

Implementation

Mathematical
problem formulation

Theoretical method
to solve problem

Theoretical algorithm
implementing method

Actual implementation

DeepLearning on FPGAs 4

Overall Computer Science Approach: Example

Technical Problem

Mathematical Method

Algorithm

Implementation

Best route from
vs to ne in graph

Theoretical method
to solve problem

Theoretical algorithm
implementing method

Actual implementation

DeepLearning on FPGAs 5

Overall Computer Science Approach: Example

Technical Problem

Mathematical Method

Algorithm

Implementation

Best route from
vs to ne in graph

Single source
shortest path problem

Theoretical algorithm
implementing method

Actual implementation

DeepLearning on FPGAs 6

Overall Computer Science Approach: Example

Technical Problem

Mathematical Method

Algorithm

Implementation

Best route from
vs to ne in graph

Single source
shortest path problem

Dijkstra, A*,
Floyd-Warhsall, . . .

Actual implementation

DeepLearning on FPGAs 7

Overall Computer Science Approach: Example

Technical Problem

Mathematical Method

Algorithm

Implementation

Best route from
vs to ne in graph

Single source
shortest path problem

Dijkstra, A*,
Floyd-Warhsall, . . .

C,Java,Python,...

DeepLearning on FPGAs 8

Data Mining Basics

What is Data Mining?

DeepLearning on FPGAs 9

Data Mining Basics

“The overall goal of the data mining process is to extract
information from a data set and transform it into an
understandable structure for further use.”

Fact: Data Mining follows the same general approach
But: Some problems are hard to be exactly formalised and thus
need some special treatment

Example: Find all cats on the given pictures
→ What is a mathematical representation of a cat?

Idea: Formalise given problem by positive and negative examples
→ That is our data

DeepLearning on FPGAs 10

Data Mining Basics

“The overall goal of the data mining process is to extract
information from a data set and transform it into an
understandable structure for further use.”

Fact: Data Mining follows the same general approach
But: Some problems are hard to be exactly formalised and thus
need some special treatment

Example: Find all cats on the given pictures
→ What is a mathematical representation of a cat?

Idea: Formalise given problem by positive and negative examples
→ That is our data

DeepLearning on FPGAs 10

Data Mining Basics

“The overall goal of the data mining process is to extract
information from a data set and transform it into an
understandable structure for further use.”

Fact: Data Mining follows the same general approach
But: Some problems are hard to be exactly formalised and thus
need some special treatment

Example: Find all cats on the given pictures
→ What is a mathematical representation of a cat?

Idea: Formalise given problem by positive and negative examples
→ That is our data

DeepLearning on FPGAs 10

Data Mining Basics

“The overall goal of the data mining process is to extract
information from a data set and transform it into an
understandable structure for further use.”

Fact: Data Mining follows the same general approach
But: Some problems are hard to be exactly formalised and thus
need some special treatment

Example: Find all cats on the given pictures
→ What is a mathematical representation of a cat?

Idea: Formalise given problem by positive and negative examples
→ That is our data

DeepLearning on FPGAs 10

Data Mining Basics

Problem 1: Data needs to be gathered and pre-processed
→ crawling the web for images with tag “cat”

Problem 2: Totally unclear what knowledge our data might contain
→ cats and dogs can be on the same picture
⇒ We have to “mine” data and knowledge from it

Data Mining is an interdisciplinary field of:

computer science: algorithm, theory, data structure, algorithm
implementation, data warehousing, . . .

statistics: algorithm, theoretical insights, modelling, . . .

domain specifics: theoretical and practical insights, special
knowledge, . . .

Our focus: Mostly implementation and algorithms

DeepLearning on FPGAs 11

Data Mining Basics

Problem 1: Data needs to be gathered and pre-processed
→ crawling the web for images with tag “cat”
Problem 2: Totally unclear what knowledge our data might contain
→ cats and dogs can be on the same picture
⇒ We have to “mine” data and knowledge from it

Data Mining is an interdisciplinary field of:

computer science: algorithm, theory, data structure, algorithm
implementation, data warehousing, . . .

statistics: algorithm, theoretical insights, modelling, . . .

domain specifics: theoretical and practical insights, special
knowledge, . . .

Our focus: Mostly implementation and algorithms

DeepLearning on FPGAs 11

Data Mining Basics

Problem 1: Data needs to be gathered and pre-processed
→ crawling the web for images with tag “cat”
Problem 2: Totally unclear what knowledge our data might contain
→ cats and dogs can be on the same picture
⇒ We have to “mine” data and knowledge from it

Data Mining is an interdisciplinary field of:

computer science: algorithm, theory, data structure, algorithm
implementation, data warehousing, . . .

statistics: algorithm, theoretical insights, modelling, . . .

domain specifics: theoretical and practical insights, special
knowledge, . . .

Our focus: Mostly implementation and algorithms
DeepLearning on FPGAs 11

Overall Computer Science Approach

Technical Problem

Mathematical Method

Algorithm

Implementation

Data Mining problems

Theoretical method
to solve problem

Theoretical algorithm
implementing method

Actual implementation

DeepLearning on FPGAs 12

Data Mining: Problems

Our focus: Classification

Given:

Set of possible classes Y, e.g. Y = {−1,+1}
Set of labelled training examples / data
D = {(~x1, y1), . . . , (~xN , yN) | (~xi, yi) ∈ X × Y}
A model fθ : X → Y with parameter θ ∈ Θ

Find: θ̂, so that f
θ̂
(~x) = f̂(~x) that predicts class y for given ~x

Note 1: If |Y| = 2 its called binary classification
Note 2: If Y = R its called regression
Our focus: Binary classification: Y = {0,+1} or Y = {−1,+1}

DeepLearning on FPGAs 13

Data Mining: Problems

Our focus: Classification

Given:

Set of possible classes Y, e.g. Y = {−1,+1}
Set of labelled training examples / data
D = {(~x1, y1), . . . , (~xN , yN) | (~xi, yi) ∈ X × Y}
A model fθ : X → Y with parameter θ ∈ Θ

Find: θ̂, so that f
θ̂
(~x) = f̂(~x) that predicts class y for given ~x

Note 1: If |Y| = 2 its called binary classification
Note 2: If Y = R its called regression
Our focus: Binary classification: Y = {0,+1} or Y = {−1,+1}

DeepLearning on FPGAs 13

Data Mining: Notation

Note: The input space can be (nearly) everything
Our focus: d−dimensional vectors: ~x ∈ X ⊆ Rn

D Feature 1 Feature 2 . . . Feature d Label

Example 1 x11 x12 . . . x1d y1
Example 2 x21 x22 . . . x2d y2

...
...

...
. . .

...
...

Example N xN1 xN1 . . . xNd yN

Matrix X ∈ Rd×N Vector ~y ∈ YN

then: in short D = (X, ~y)

DeepLearning on FPGAs 14

Data Mining: Notation

Note: The input space can be (nearly) everything
Our focus: d−dimensional vectors: ~x ∈ X ⊆ Rn

D Feature 1 Feature 2 . . . Feature d Label

Example 1 x11 x12 . . . x1d y1
Example 2 x21 x22 . . . x2d y2

...
...

...
. . .

...
...

Example N xN1 xN1 . . . xNd yN

Matrix X ∈ Rd×N Vector ~y ∈ YN

then: in short D = (X, ~y)

DeepLearning on FPGAs 14

Overall Computer Science Approach

Technical Problem

Mathematical Method

Algorithm

Implementation

Classification X

Theoretical method
to solve problem

Theoretical algorithm
implementing method

Actual implementation

DeepLearning on FPGAs 15

What is a good model function?

Observation
We need model function fθ

Maybe simplest model

f(~x) =

{
+1 if xi > c

−1 else

Thus θ = (i, c)
But Which feature is important?
Again simple Just use all

DeepLearning on FPGAs 16

What is a good model function?

Observation
We need model function fθ

Maybe simplest model

f(~x) =

{
+1 if xi > c

−1 else

Thus θ = (i, c)
But Which feature is important?
Again simple Just use all

DeepLearning on FPGAs 16

What is a good model function?

Observation
We need model function fθ

Maybe simplest model

f(~x) =

{
+1 if xi > c

−1 else

Thus θ = (i, c)
But Which feature is important?
Again simple Just use all

DeepLearning on FPGAs 16

Artificial Neural Networks: Single Neuron

Simple case: Let ~x ∈ Bd
Biology’s view:

...

Neuron . . .

input processing output

“Fire” if input signals reach
threshold:

f(~x) =

{
+1 if

∑d
i=1 xi ≥ b

0 else

Geometrical view:

x1

x2

Predict class depending on side
of line (count):

f(~x) =

{
+1 if

∑d
i=1 xi ≥ b

0 else

DeepLearning on FPGAs 17

Artificial Neural Networks: Single Neuron

Simple case: Let ~x ∈ Bd
Biology’s view:

...

Neuron . . .

input processing output

“Fire” if input signals reach
threshold:

f(~x) =

{
+1 if

∑d
i=1 xi ≥ b

0 else

Geometrical view:

x1

x2

Predict class depending on side
of line (count):

f(~x) =

{
+1 if

∑d
i=1 xi ≥ b

0 else

DeepLearning on FPGAs 17

Artificial Neural Networks: Single Neuron

Note: We basically count the number of positive inputs
1943: McCulloch-Pitts Neuron:

Simple linear model with binary input and output

Can model boolean OR with b = 1

Can model boolean AND with b = d

Simple extension also allows boolean NOT

Thus: A network of McCulloch-Pitts neurons can simulate every
boolean function (functional complete)

Remark: That does not help with classification, thus

Rosenblatt 1958: Use weights wi ∈ R for every input xi ∈ B
Minksy-Papert 1959: Allow real valued inputs xi ∈ R

DeepLearning on FPGAs 18

Artificial Neural Networks: Single Neuron

Note: We basically count the number of positive inputs
1943: McCulloch-Pitts Neuron:

Simple linear model with binary input and output

Can model boolean OR with b = 1

Can model boolean AND with b = d

Simple extension also allows boolean NOT

Thus: A network of McCulloch-Pitts neurons can simulate every
boolean function (functional complete)

Remark: That does not help with classification, thus

Rosenblatt 1958: Use weights wi ∈ R for every input xi ∈ B
Minksy-Papert 1959: Allow real valued inputs xi ∈ R

DeepLearning on FPGAs 18

Artificial Neural Networks: Single Neuron

Note: We basically count the number of positive inputs
1943: McCulloch-Pitts Neuron:

Simple linear model with binary input and output

Can model boolean OR with b = 1

Can model boolean AND with b = d

Simple extension also allows boolean NOT

Thus: A network of McCulloch-Pitts neurons can simulate every
boolean function (functional complete)

Remark: That does not help with classification, thus

Rosenblatt 1958: Use weights wi ∈ R for every input xi ∈ B
Minksy-Papert 1959: Allow real valued inputs xi ∈ R

DeepLearning on FPGAs 18

Artificial Neural Networks: Perceptron

A perceptron is a linear classifier f : Rd → {0, 1} with

f̂(~x) =

{
+1 if

∑d
i=1wi · xi ≥ b

0 else

Linear function in d = 2: y = mx+ b̃
Perceptron: w1 · x1 + w2 · x2 ≥ b⇔ x2 = b

w2
− w1

w2
x1

Obviously: A perceptron is a hyperplane in d dimensions

Note: ~w = (w1, . . . , wd, b)
T are the parameters of a perceptron

Notation: Given ~x we add a 1 to the end of it ~x = (x1, . . . , xd, 1)T

Then : f̂(~x) =

{
+1 if ~x · ~wT ≥ 0

0 else

DeepLearning on FPGAs 19

Artificial Neural Networks: Perceptron

A perceptron is a linear classifier f : Rd → {0, 1} with

f̂(~x) =

{
+1 if

∑d
i=1wi · xi ≥ b

0 else

Linear function in d = 2: y = mx+ b̃
Perceptron: w1 · x1 + w2 · x2 ≥ b⇔ x2 = b

w2
− w1

w2
x1

Obviously: A perceptron is a hyperplane in d dimensions

Note: ~w = (w1, . . . , wd, b)
T are the parameters of a perceptron

Notation: Given ~x we add a 1 to the end of it ~x = (x1, . . . , xd, 1)T

Then : f̂(~x) =

{
+1 if ~x · ~wT ≥ 0

0 else

DeepLearning on FPGAs 19

Artificial Neural Networks: Perceptron

A perceptron is a linear classifier f : Rd → {0, 1} with

f̂(~x) =

{
+1 if

∑d
i=1wi · xi ≥ b

0 else

Linear function in d = 2: y = mx+ b̃
Perceptron: w1 · x1 + w2 · x2 ≥ b⇔ x2 = b

w2
− w1

w2
x1

Obviously: A perceptron is a hyperplane in d dimensions

Note: ~w = (w1, . . . , wd, b)
T are the parameters of a perceptron

Notation: Given ~x we add a 1 to the end of it ~x = (x1, . . . , xd, 1)T

Then : f̂(~x) =

{
+1 if ~x · ~wT ≥ 0

0 else
DeepLearning on FPGAs 19

ANN: Perceptron Learning

Note: A perceptron assumes that the data is linear separable

Big Note: This is an assumption and not necessarily true!
But: In case of linear separability, there are many “good” ~w

Note: We are happy with one separative vector ~w

DeepLearning on FPGAs 20

ANN: Perceptron Learning

Note: A perceptron assumes that the data is linear separable
Big Note: This is an assumption and not necessarily true!

But: In case of linear separability, there are many “good” ~w

Note: We are happy with one separative vector ~w

DeepLearning on FPGAs 20

ANN: Perceptron Learning

Note: A perceptron assumes that the data is linear separable
Big Note: This is an assumption and not necessarily true!
But: In case of linear separability, there are many “good” ~w

Note: We are happy with one separative vector ~w

DeepLearning on FPGAs 20

ANN: Perceptron Learning

Note: A perceptron assumes that the data is linear separable
Big Note: This is an assumption and not necessarily true!
But: In case of linear separability, there are many “good” ~w

Note: We are happy with one separative vector ~w
DeepLearning on FPGAs 20

Overall Computer Science Approach

Technical Problem

Mathematical Method

Algorithm

Implementation

Classification X

Perceptron X

Theoretical algorithm
implementing method

Actual implementation

DeepLearning on FPGAs 21

ANN: Perceptron Learning

Question: How do we get the weights ~w?

Observation: We look at ~x · ~wT ≥ 0

if output was 0 but should have been 1 increment weights

if output was 1 but should have been 0 decrement weights

if output was correct, don’t change weights

1: ~w = rand(1, . . . , d+ 1)
2: while ERROR do
3: for (~xi, yi) ∈ D do
4: ~w = ~w + α · ~xi · (yi − f̂(~xi))
5: end for
6: end while

Note: α ∈ R>0 is a stepsize / learning rate

DeepLearning on FPGAs 22

ANN: Perceptron Learning

Question: How do we get the weights ~w?
Observation: We look at ~x · ~wT ≥ 0

if output was 0 but should have been 1 increment weights

if output was 1 but should have been 0 decrement weights

if output was correct, don’t change weights

1: ~w = rand(1, . . . , d+ 1)
2: while ERROR do
3: for (~xi, yi) ∈ D do
4: ~w = ~w + α · ~xi · (yi − f̂(~xi))
5: end for
6: end while

Note: α ∈ R>0 is a stepsize / learning rate

DeepLearning on FPGAs 22

ANN: Perceptron Learning

Question: How do we get the weights ~w?
Observation: We look at ~x · ~wT ≥ 0

if output was 0 but should have been 1 increment weights

if output was 1 but should have been 0 decrement weights

if output was correct, don’t change weights

1: ~w = rand(1, . . . , d+ 1)
2: while ERROR do
3: for (~xi, yi) ∈ D do
4: ~w = ~w + α · ~xi · (yi − f̂(~xi))
5: end for
6: end while

Note: α ∈ R>0 is a stepsize / learning rate

DeepLearning on FPGAs 22

ANN: Perceptron Learning

Question: How do we get the weights ~w?
Observation: We look at ~x · ~wT ≥ 0

if output was 0 but should have been 1 increment weights

if output was 1 but should have been 0 decrement weights

if output was correct, don’t change weights

1: ~w = rand(1, . . . , d+ 1)
2: while ERROR do
3: for (~xi, yi) ∈ D do
4: ~w = ~w + α · ~xi · (yi − f̂(~xi))
5: end for
6: end while

Note: α ∈ R>0 is a stepsize / learning rate
DeepLearning on FPGAs 22

ANN: Perceptron Learning

Update rule: ~wnew = ~wold + α · ~xi · (yi − f̂old(~xi))

Wrong classification:

Case 1: yi − f̂old(~xi) = 1⇒ yi = 1, f̂old(~xi) = 0

f̂new(~xi) = ~xi · (~wnew)T = ~xi · (~wold + α · 1 · ~xi)T

= ~xi · ~wTold + α · ~xi · ~xTi = ~xi · ~wTold + α · ||~xi||2

→ ~w is incremented and classification is moved towards 1 X

Case 2: yi − f̂old(~xi) = −1⇒ yi = 0, f̂old(~xi) = 1

f̂new(~xi) = ~xi · (~wnew)T = ~xi · (~wold − α · 1 · ~xi)T

= ~xi · ~wTold − α · ~xi · ~xTi = ~xi · ~wTold − α · ||~xi||2

→ ~w is decremented and classification is moved towards 0 X

DeepLearning on FPGAs 23

ANN: Perceptron Learning

Update rule: ~wnew = ~wold + α · ~xi · (yi − f̂old(~xi))
Wrong classification:

Case 1: yi − f̂old(~xi) = 1⇒ yi = 1, f̂old(~xi) = 0

f̂new(~xi) = ~xi · (~wnew)T = ~xi · (~wold + α · 1 · ~xi)T

= ~xi · ~wTold + α · ~xi · ~xTi = ~xi · ~wTold + α · ||~xi||2

→ ~w is incremented and classification is moved towards 1 X

Case 2: yi − f̂old(~xi) = −1⇒ yi = 0, f̂old(~xi) = 1

f̂new(~xi) = ~xi · (~wnew)T = ~xi · (~wold − α · 1 · ~xi)T

= ~xi · ~wTold − α · ~xi · ~xTi = ~xi · ~wTold − α · ||~xi||2

→ ~w is decremented and classification is moved towards 0 X

DeepLearning on FPGAs 23

ANN: Perceptron Learning

Update rule: ~wnew = ~wold + α · ~xi · (yi − f̂old(~xi))
Wrong classification:

Case 1: yi − f̂old(~xi) = 1⇒ yi = 1, f̂old(~xi) = 0

f̂new(~xi) = ~xi · (~wnew)T = ~xi · (~wold + α · 1 · ~xi)T

= ~xi · ~wTold + α · ~xi · ~xTi = ~xi · ~wTold + α · ||~xi||2

→ ~w is incremented and classification is moved towards 1 X

Case 2: yi − f̂old(~xi) = −1⇒ yi = 0, f̂old(~xi) = 1

f̂new(~xi) = ~xi · (~wnew)T = ~xi · (~wold − α · 1 · ~xi)T

= ~xi · ~wTold − α · ~xi · ~xTi = ~xi · ~wTold − α · ||~xi||2

→ ~w is decremented and classification is moved towards 0 X

DeepLearning on FPGAs 23

ANN: Perceptron Learning

Update rule: ~wnew = ~wold + α · ~xi · (yi − f̂old(~xi))
Wrong classification:

Case 1: yi − f̂old(~xi) = 1⇒ yi = 1, f̂old(~xi) = 0

f̂new(~xi) = ~xi · (~wnew)T = ~xi · (~wold + α · 1 · ~xi)T

= ~xi · ~wTold + α · ~xi · ~xTi = ~xi · ~wTold + α · ||~xi||2

→ ~w is incremented and classification is moved towards 1 X

Case 2: yi − f̂old(~xi) = −1⇒ yi = 0, f̂old(~xi) = 1

f̂new(~xi) = ~xi · (~wnew)T = ~xi · (~wold − α · 1 · ~xi)T

= ~xi · ~wTold − α · ~xi · ~xTi = ~xi · ~wTold − α · ||~xi||2

→ ~w is decremented and classification is moved towards 0 X

DeepLearning on FPGAs 23

ANN: Perceptron Learning

Update rule: ~wnew = ~wold + α · ~xi · (yi − f̂old(~xi))
Wrong classification:

Case 1: yi − f̂old(~xi) = 1⇒ yi = 1, f̂old(~xi) = 0

f̂new(~xi) = ~xi · (~wnew)T = ~xi · (~wold + α · 1 · ~xi)T

= ~xi · ~wTold + α · ~xi · ~xTi = ~xi · ~wTold + α · ||~xi||2

→ ~w is incremented and classification is moved towards 1 X

Case 2: yi − f̂old(~xi) = −1⇒ yi = 0, f̂old(~xi) = 1

f̂new(~xi) = ~xi · (~wnew)T = ~xi · (~wold − α · 1 · ~xi)T

= ~xi · ~wTold − α · ~xi · ~xTi = ~xi · ~wTold − α · ||~xi||2

→ ~w is decremented and classification is moved towards 0 X

DeepLearning on FPGAs 23

ANN: Perceptron Learning

Update rule: ~wnew = ~wold + α · ~xi · (yi − f̂old(~xi))
Wrong classification:

Case 1: yi − f̂old(~xi) = 1⇒ yi = 1, f̂old(~xi) = 0

f̂new(~xi) = ~xi · (~wnew)T = ~xi · (~wold + α · 1 · ~xi)T

= ~xi · ~wTold + α · ~xi · ~xTi = ~xi · ~wTold + α · ||~xi||2

→ ~w is incremented and classification is moved towards 1 X

Case 2: yi − f̂old(~xi) = −1⇒ yi = 0, f̂old(~xi) = 1

f̂new(~xi) = ~xi · (~wnew)T = ~xi · (~wold − α · 1 · ~xi)T

= ~xi · ~wTold − α · ~xi · ~xTi = ~xi · ~wTold − α · ||~xi||2

→ ~w is decremented and classification is moved towards 0 X

DeepLearning on FPGAs 23

ANN: Perceptron Learning

Update rule: ~wnew = ~wold + α · ~xi · (yi − f̂old(~xi))
Wrong classification:

Case 1: yi − f̂old(~xi) = 1⇒ yi = 1, f̂old(~xi) = 0

f̂new(~xi) = ~xi · (~wnew)T = ~xi · (~wold + α · 1 · ~xi)T

= ~xi · ~wTold + α · ~xi · ~xTi = ~xi · ~wTold + α · ||~xi||2

→ ~w is incremented and classification is moved towards 1 X

Case 2: yi − f̂old(~xi) = −1⇒ yi = 0, f̂old(~xi) = 1

f̂new(~xi) = ~xi · (~wnew)T = ~xi · (~wold − α · 1 · ~xi)T

= ~xi · ~wTold − α · ~xi · ~xTi = ~xi · ~wTold − α · ||~xi||2

→ ~w is decremented and classification is moved towards 0 X

DeepLearning on FPGAs 23

ANN: Perceptron Learning

Update rule: ~wnew = ~wold + α · ~xi · (yi − f̂old(~xi))
Wrong classification:

Case 1: yi − f̂old(~xi) = 1⇒ yi = 1, f̂old(~xi) = 0

f̂new(~xi) = ~xi · (~wnew)T = ~xi · (~wold + α · 1 · ~xi)T

= ~xi · ~wTold + α · ~xi · ~xTi = ~xi · ~wTold + α · ||~xi||2

→ ~w is incremented and classification is moved towards 1 X

Case 2: yi − f̂old(~xi) = −1⇒ yi = 0, f̂old(~xi) = 1

f̂new(~xi) = ~xi · (~wnew)T = ~xi · (~wold − α · 1 · ~xi)T

= ~xi · ~wTold − α · ~xi · ~xTi = ~xi · ~wTold − α · ||~xi||2

→ ~w is decremented and classification is moved towards 0 X

DeepLearning on FPGAs 23

ANN: Perceptron Learning

Update rule: ~wnew = ~wold + α · ~xi · (yi − f̂old(~xi))
Wrong classification:

Case 1: yi − f̂old(~xi) = 1⇒ yi = 1, f̂old(~xi) = 0

f̂new(~xi) = ~xi · (~wnew)T = ~xi · (~wold + α · 1 · ~xi)T

= ~xi · ~wTold + α · ~xi · ~xTi = ~xi · ~wTold + α · ||~xi||2

→ ~w is incremented and classification is moved towards 1 X

Case 2: yi − f̂old(~xi) = −1⇒ yi = 0, f̂old(~xi) = 1

f̂new(~xi) = ~xi · (~wnew)T = ~xi · (~wold − α · 1 · ~xi)T

= ~xi · ~wTold − α · ~xi · ~xTi = ~xi · ~wTold − α · ||~xi||2

→ ~w is decremented and classification is moved towards 0 X
DeepLearning on FPGAs 23

ANN: Perceptron Learning

Update rule: ~wnew = ~wold + α · ~xi · (yi − f̂old(~xi))

Correct classification: yi − f̂(~xi) = 0

~wnew = ~wold, thus ~w is unchanged X

Rosenblatt 1958 showed:

Algorithms converges if D is linear separable

Algorithm may have exponential runtime

Variation: Batch processing - Update ~w after testing all examples

~wnew = ~wold + α
∑

(~xi,yi)∈Dwrong

~xi · (yi − f̂old(~xi))

Usually: Faster convergence, but more memory needed

DeepLearning on FPGAs 24

ANN: Perceptron Learning

Update rule: ~wnew = ~wold + α · ~xi · (yi − f̂old(~xi))
Correct classification: yi − f̂(~xi) = 0

~wnew = ~wold, thus ~w is unchanged X

Rosenblatt 1958 showed:

Algorithms converges if D is linear separable

Algorithm may have exponential runtime

Variation: Batch processing - Update ~w after testing all examples

~wnew = ~wold + α
∑

(~xi,yi)∈Dwrong

~xi · (yi − f̂old(~xi))

Usually: Faster convergence, but more memory needed

DeepLearning on FPGAs 24

ANN: Perceptron Learning

Update rule: ~wnew = ~wold + α · ~xi · (yi − f̂old(~xi))
Correct classification: yi − f̂(~xi) = 0

~wnew = ~wold, thus ~w is unchanged X

Rosenblatt 1958 showed:

Algorithms converges if D is linear separable

Algorithm may have exponential runtime

Variation: Batch processing - Update ~w after testing all examples

~wnew = ~wold + α
∑

(~xi,yi)∈Dwrong

~xi · (yi − f̂old(~xi))

Usually: Faster convergence, but more memory needed

DeepLearning on FPGAs 24

ANN: Perceptron Learning

Update rule: ~wnew = ~wold + α · ~xi · (yi − f̂old(~xi))
Correct classification: yi − f̂(~xi) = 0

~wnew = ~wold, thus ~w is unchanged X

Rosenblatt 1958 showed:

Algorithms converges if D is linear separable

Algorithm may have exponential runtime

Variation: Batch processing - Update ~w after testing all examples

~wnew = ~wold + α
∑

(~xi,yi)∈Dwrong

~xi · (yi − f̂old(~xi))

Usually: Faster convergence, but more memory needed
DeepLearning on FPGAs 24

Overall Computer Science Approach

Technical Problem

Mathematical Method

Algorithm

Implementation

Classification X

Linear classifier X

Perceptron learning X

Actual implementation

DeepLearning on FPGAs 25

Data Mining: Implementation of Perceptron
Learning

Obviously: Implementation also influences the runtime!

Fact: We need to take the underlying system into account

System: CPU, GPU, FPGA, . . .

Hardware: Word length, cache sizes, vectorization, . . .

Software: Paging in OS, (Multi-) Threading, Swapping, . . .

Language: C vs. Java vs. Haskell . . .

Usually: Use language and system we know
But: Some systems / hardware is better at certain tasks
→ e.g. graphics cards are built to do matrix-vector multiplication

Thus: Choose method and algorithm depending on system
Our focus: Mostly methods and algorithms, later implementation

DeepLearning on FPGAs 26

Data Mining: Implementation of Perceptron
Learning

Obviously: Implementation also influences the runtime!

Fact: We need to take the underlying system into account

System: CPU, GPU, FPGA, . . .

Hardware: Word length, cache sizes, vectorization, . . .

Software: Paging in OS, (Multi-) Threading, Swapping, . . .

Language: C vs. Java vs. Haskell . . .

Usually: Use language and system we know
But: Some systems / hardware is better at certain tasks
→ e.g. graphics cards are built to do matrix-vector multiplication

Thus: Choose method and algorithm depending on system
Our focus: Mostly methods and algorithms, later implementation

DeepLearning on FPGAs 26

Data Mining: Implementation of Perceptron
Learning

Obviously: Implementation also influences the runtime!

Fact: We need to take the underlying system into account

System: CPU, GPU, FPGA, . . .

Hardware: Word length, cache sizes, vectorization, . . .

Software: Paging in OS, (Multi-) Threading, Swapping, . . .

Language: C vs. Java vs. Haskell . . .

Usually: Use language and system we know
But: Some systems / hardware is better at certain tasks
→ e.g. graphics cards are built to do matrix-vector multiplication

Thus: Choose method and algorithm depending on system
Our focus: Mostly methods and algorithms, later implementation

DeepLearning on FPGAs 26

Data Mining: Implementation of Perceptron
Learning

Obviously: Implementation also influences the runtime!

Fact: We need to take the underlying system into account

System: CPU, GPU, FPGA, . . .

Hardware: Word length, cache sizes, vectorization, . . .

Software: Paging in OS, (Multi-) Threading, Swapping, . . .

Language: C vs. Java vs. Haskell . . .

Usually: Use language and system we know
But: Some systems / hardware is better at certain tasks
→ e.g. graphics cards are built to do matrix-vector multiplication

Thus: Choose method and algorithm depending on system
Our focus: Mostly methods and algorithms, later implementation

DeepLearning on FPGAs 26

Overall Computer Science Approach

Technical Problem

Mathematical Method

Algorithm

Implementation

Classification X

Perceptron X

Simple learning rule X

System and language X

DeepLearning on FPGAs 27

Data Mining: Measure Model quality

Fact 1: Prediction quality also depends on the algorithm, the
implementation and the data
→ Integer operations are fast, but less accurate than floating point

Fact 2: There are many different models, even more algorithms
and even more implementations
→ Learning Rule, Gradient Descent, Evolutionary Optimization . . .

Bottom line: Comparing specific methods is difficult
Thus: Compare performance of computed model

Important: There is no free lunch (Wolpert, 1996)
→ Some methods work better on some problems, but no method
works well on all problems

DeepLearning on FPGAs 28

Data Mining: Measure Model quality

Fact 1: Prediction quality also depends on the algorithm, the
implementation and the data
→ Integer operations are fast, but less accurate than floating point

Fact 2: There are many different models, even more algorithms
and even more implementations
→ Learning Rule, Gradient Descent, Evolutionary Optimization . . .

Bottom line: Comparing specific methods is difficult
Thus: Compare performance of computed model

Important: There is no free lunch (Wolpert, 1996)
→ Some methods work better on some problems, but no method
works well on all problems

DeepLearning on FPGAs 28

Data Mining: Measure Model quality

Fact 1: Prediction quality also depends on the algorithm, the
implementation and the data
→ Integer operations are fast, but less accurate than floating point

Fact 2: There are many different models, even more algorithms
and even more implementations
→ Learning Rule, Gradient Descent, Evolutionary Optimization . . .

Bottom line: Comparing specific methods is difficult
Thus: Compare performance of computed model

Important: There is no free lunch (Wolpert, 1996)
→ Some methods work better on some problems, but no method
works well on all problems

DeepLearning on FPGAs 28

Data Mining: Measure Model quality

Fact 1: Prediction quality also depends on the algorithm, the
implementation and the data
→ Integer operations are fast, but less accurate than floating point

Fact 2: There are many different models, even more algorithms
and even more implementations
→ Learning Rule, Gradient Descent, Evolutionary Optimization . . .

Bottom line: Comparing specific methods is difficult
Thus: Compare performance of computed model

Important: There is no free lunch (Wolpert, 1996)
→ Some methods work better on some problems, but no method
works well on all problems

DeepLearning on FPGAs 28

Data Mining: Measure Model quality (2)

Question: So, what is model quality?

1 how well explains the model training data?

2 can we give any guarantees for new predictions?

3 how well generalises the model to new and unseen data?

So far Linear model assumption
No guarantees at all, especially if linear assumption does not hold

DeepLearning on FPGAs 29

Data Mining: Measure Model quality (2)

Question: So, what is model quality?

1 how well explains the model training data?

2 can we give any guarantees for new predictions?

3 how well generalises the model to new and unseen data?

So far Linear model assumption
No guarantees at all, especially if linear assumption does not hold

DeepLearning on FPGAs 29

Data Mining: Measure Model quality (3)

Fact: In binary classification we have two choices: predict 0 or 1
→ 2 possible wrong predictions and 2 possible correct predictions

Visualization: Confusion matrix

Predicted value

True positive
(TP)

False negative
(FN)

True
value

False positive
(FP)

True negative
(TN)

Accuracy: Acc = TP+TN
N

Big Remark: The accuracy only tells us something about the data
D we know! There are no guarantees for new data

DeepLearning on FPGAs 30

Data Mining: Measure Model quality (3)

Fact: In binary classification we have two choices: predict 0 or 1
→ 2 possible wrong predictions and 2 possible correct predictions
Visualization: Confusion matrix

Predicted value

True positive
(TP)

False negative
(FN)

True
value

False positive
(FP)

True negative
(TN)

Accuracy: Acc = TP+TN
N

Big Remark: The accuracy only tells us something about the data
D we know! There are no guarantees for new data

DeepLearning on FPGAs 30

Data Mining: Measure Model quality (3)

Fact: In binary classification we have two choices: predict 0 or 1
→ 2 possible wrong predictions and 2 possible correct predictions
Visualization: Confusion matrix

Predicted value

True positive
(TP)

False negative
(FN)

True
value

False positive
(FP)

True negative
(TN)

Accuracy: Acc = TP+TN
N

Big Remark: The accuracy only tells us something about the data
D we know! There are no guarantees for new data

DeepLearning on FPGAs 30

Data Mining: Measure Model quality (4)

Obviously: The best model has Acc = 1, the worst has Acc = 0
Observation: If we store all the data for look-up, then Acc = 1

Question: Is that what we want?
Clear: This is just memorizing the training data, no real learning!
Question: How well deals our model with new, yet unseen data?

Idea: Split data into training DTrain and test data DTest
Then: DTest is new to the model f

θ̂
Question: How to split D ?

DeepLearning on FPGAs 31

Data Mining: Measure Model quality (4)

Obviously: The best model has Acc = 1, the worst has Acc = 0
Observation: If we store all the data for look-up, then Acc = 1

Question: Is that what we want?
Clear: This is just memorizing the training data, no real learning!
Question: How well deals our model with new, yet unseen data?

Idea: Split data into training DTrain and test data DTest
Then: DTest is new to the model f

θ̂
Question: How to split D ?

DeepLearning on FPGAs 31

Data Mining: Measure Model quality (4)

Obviously: The best model has Acc = 1, the worst has Acc = 0
Observation: If we store all the data for look-up, then Acc = 1

Question: Is that what we want?
Clear: This is just memorizing the training data, no real learning!
Question: How well deals our model with new, yet unseen data?

Idea: Split data into training DTrain and test data DTest
Then: DTest is new to the model f

θ̂
Question: How to split D ?

DeepLearning on FPGAs 31

Data Mining: Measure Model quality (5)

1) Test/Train: Split D by size, e.g. 80% training and 20% test data

→ Fast and easy to compute, but sensitive for “bad” splits.
→ Model quality might be over- or under-estimated

2) Leave-One-Out: Use every example once for testing and train
model on the remaining data. Average results.
→ N models are computed, but insensitive for “bad” splits.
→ Usually impractical

3) K-fold cross validation: Split data into k buckets. Use every
bucket once for testing / train model on the rest. Average results.
→ Insensitive for “bad” splits and practical. Usually k = 10.

DeepLearning on FPGAs 32

Data Mining: Measure Model quality (5)

1) Test/Train: Split D by size, e.g. 80% training and 20% test data

→ Fast and easy to compute, but sensitive for “bad” splits.
→ Model quality might be over- or under-estimated

2) Leave-One-Out: Use every example once for testing and train
model on the remaining data. Average results.
→ N models are computed, but insensitive for “bad” splits.
→ Usually impractical

3) K-fold cross validation: Split data into k buckets. Use every
bucket once for testing / train model on the rest. Average results.
→ Insensitive for “bad” splits and practical. Usually k = 10.

DeepLearning on FPGAs 32

Data Mining: Measure Model quality (5)

1) Test/Train: Split D by size, e.g. 80% training and 20% test data

→ Fast and easy to compute, but sensitive for “bad” splits.
→ Model quality might be over- or under-estimated

2) Leave-One-Out: Use every example once for testing and train
model on the remaining data. Average results.
→ N models are computed, but insensitive for “bad” splits.
→ Usually impractical

3) K-fold cross validation: Split data into k buckets. Use every
bucket once for testing / train model on the rest. Average results.
→ Insensitive for “bad” splits and practical. Usually k = 10.

DeepLearning on FPGAs 32

Summary

Important concepts:

Classification is one data mining task

Training data is used to define and solve the task

A Method is a general approach / idea to solve a task

A algorithm is a way to realise a method

A model forms the extracted knowledge from data

Accuracy measures the model quality given the data

Note: Runtime and model quality depend on method, algorithm
and implementation

DeepLearning on FPGAs 33

Summary

Important concepts:

Classification is one data mining task

Training data is used to define and solve the task

A Method is a general approach / idea to solve a task

A algorithm is a way to realise a method

A model forms the extracted knowledge from data

Accuracy measures the model quality given the data

Note: Runtime and model quality depend on method, algorithm
and implementation

DeepLearning on FPGAs 33

Some administration stuff

Requirements to pass this course

Plan an approach to solve kaggle competition including

Data pre-processing
Implementation of Neural Network learning
Incorperate FPGA design

Give a small presentation / review about your approach

Thus: After the lecture phase you are free to do what you want
until the end of the semester → you work in self-organizing groups

Question: When will we meet again for lectures?

DeepLearning on FPGAs 34

Some administration stuff

Requirements to pass this course

Plan an approach to solve kaggle competition including

Data pre-processing
Implementation of Neural Network learning
Incorperate FPGA design

Give a small presentation / review about your approach

Thus: After the lecture phase you are free to do what you want
until the end of the semester → you work in self-organizing groups

Question: When will we meet again for lectures?

DeepLearning on FPGAs 34

Homwork Data
For development Use smaller data set

32× 32 pixel grayscaled images of numbers 0− 9 (10 labels)
already pre-processed in CSV format
test/train split plus a smaller sample for development

DeepLearning on FPGAs 35

Homework

Homework I give simple homeworks to get you started more easily
But I will not check the homework, your choice to do it.

Homework until next meeting

Implement a simple CSV-Reader

First column contains the label (0− 9)
Remaining 784 columns contain grayscale value (0− 255)

Implement perceptron learning algorithm for two numbers

Implement accuracy computation for Test/Train split

Note 1: We will later use C, so please use C or a C-like language
Note 2: Use the smaller split for development and the complete
data set for testing → What’s your accuracy?

DeepLearning on FPGAs 36

Homework

Homework I give simple homeworks to get you started more easily
But I will not check the homework, your choice to do it.

Homework until next meeting

Implement a simple CSV-Reader

First column contains the label (0− 9)
Remaining 784 columns contain grayscale value (0− 255)

Implement perceptron learning algorithm for two numbers

Implement accuracy computation for Test/Train split

Note 1: We will later use C, so please use C or a C-like language
Note 2: Use the smaller split for development and the complete
data set for testing → What’s your accuracy?

DeepLearning on FPGAs 36

	Aim of this course
	Data Mining
	Classification and Regression

