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ABSTRACT
This paper develops a theoretical learning model of text clas-
si�cation for Support Vector Machines (SVMs). It connects
the statistical properties of text-classi�cation tasks with the
generalization performance of a SVM in a quantitative way.
Unlike conventional approaches to learning text classi�ers,
which rely primarily on empirical evidence, this model ex-
plains why and when SVMs perform well for text classi�-
cation. In particular, it addresses the following questions:
Why can support vector machines handle the large feature
spaces in text classi�cation e�ectively? How is this related
to the statistical properties of text? What are suÆcient
conditions for applying SVMs to text-classi�cation problems
successfully?

1. INTRODUCTION
There are at least two ways to motivate why a particular

learning method is suitable for a particular learning task.
Since ultimately one is interested in the performance of the
method, one way is through comparative studies. Previ-
ous work [11, 4] presents such studies showing that Sup-
port Vector Machines (SVMs) deliver state-of-the-art classi-
�cation performance. However, success on benchmarks is a
brittle justi�cation for a learning algorithm and gives only
limited insight. Therefore, this paper analyzes the suitabil-
ity of SVMs for learning text classi�ers from a theoretical
perspective.
In particular, this paper presents an abstract model of

text-classi�cation tasks. This model is based on statisti-
cal properties of text-classi�cation problems that are both
observable and intuitive. Using this model, it is possible
to prove what types of text-classi�cation problems are eÆ-
ciently learnable with SVMs. The central result is an up-
per bound connecting the expected generalization error of
an SVM with the statistical properties of text-classi�cation
tasks.
This paper is structured as follows. After a short in-

troduction to SVMs, it will identify the key properties of
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text-classi�cation tasks. They motivate the model formally
de�ned in Section 4. In addition to verifying the assump-
tions of the model against real data, this section proves the
learnability results. Section 5 further validates the model
using experiments, before Section 6 analyzes the complexity
of text-classi�cation tasks and identi�es suÆcient conditions
for goods generalization performance.

2. SUPPORT VECTOR MACHINES
SVMs [18] were developed by V. Vapnik et al. based on

the structural risk minimization principle from statistical
learning theory. In their basic form, SVMs learn linear deci-
sion rules h(~x) = signf~w �~x+bg described by a weight vector
~w and a threshold b. Input is a sample of n training exam-
ples Sn = ((~x1; y1); � � � ; (~xn; yn)), ~xi 2 <N , yi 2 f�1;+1g.
For a linearly separable Sn, the SVM �nds the hyperplane
with maximum Euclidean distance to the closest training
examples. This distance is called the margin Æ, as depicted
in Figure 1. For non-separable training sets, the amount of
training error is measured using slack variables �i. Com-
puting the hyperplane is equivalent to solving the following
primal optimization problem [18].

Optimization Problem 1 (SVM (primal)).

minimize: V (~w; b; ~�) =
1

2
~w � ~w + C

nX
i=1

�i (1)

subj. to: 8ni=1 : yi[~w � ~xi + b] � 1� �i (2)

8ni=1 : �i > 0 (3)

The constraints (2) require that all training examples are
classi�ed correctly up to some slack �i. If a training example
lies on the \wrong" side of the hyperplane, the correspond-
ing �i is greater or equal to 1. Therefore,

Pn
i=1 �i is an

upper bound on the number of training errors. The factor
C in (1) is a parameter that allows trading o� training error
vs. model complexity. Note that the margin of the resulting
hyperplane is Æ = 1=jj~wjj.
Instead of solving OP1 directly, one can also consider the

follwing dual program.

Optimization Problem 2 (SVM (dual)).

maximize:W(~�) =
nX
i=1

�i �
1

2

nX
i=1

nX
j=1

yiyj�i�j(~xi � ~xj) (4)

subj. to:

nX
i=1

yi�i = 0 (5)

8i 2 [1::n] : 0 � �i � C (6)
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Figure 1: A binary classi�cation problem (+ vs. �)
in two dimensions. The hyperplane h� separates pos-
itive and negative training examples with maximum
margin Æ. The examples closest to the hyperplane
are called support vectors (marked with circles).

Duality implies that W (~��) = V (~w�; b�; ~��) at the respec-

tive solutions of both programs, and thatW (~�) � V (~w; b; ~�)
for any feasible point. From the solution of the dual, the pri-
mal solution can be constructed as

~w =
nX
i=1

�iyi~xi and b = yusv � ~w�~xusv (7)

where (~xusv; yusv) is some training example with 0 < �usv <
C. For all but degenerate cases, such training examples ex-
ist and the hyperplane is called stable. One special family
of hyperlanes considered in the following are called unbiased
hyperplanes. Such hyperplanes are forced to pass through
the origin, either by adding the constraint b = 0 in OP1, or
equivalently by removing the constraint (5) in OP2. From a
practical perspective for text classi�cation, SVM restricted
to unbiased hyperplane achieve a performance similar to
general (i.e. biased) hyperplanes. For the experiments in
this paper, SVMLight [12] is used for solving the dual op-
timization problem1. More detailed introductions to SVMs
can be found in [2, 18].

3. PROPERTIES OF TEXT-CLASSIFICA-
TION TASKS

To make useful statements about why a particular learn-
ing methods should work well for text classi�cation, it is nec-
essary to identify key properties of text-classi�cation tasks.
Given a bag-of-words representation, the following proper-
ties hold:

High-Dimensional Feature Space. Independent of the
particular choice of terms, text-classi�cation problems in-
volve high-dimensional feature spaces. If each word occur-
ring in the training documents is used as a feature, text-
classi�cation problems with a few thousand training exam-
ples can lead to 30,000 and more attributes.

Sparse Document Vectors. While there is a large space
of potential features, each document contains only a small
number of distinct words. This implies that document vec-
tors are very sparse.

1http://www-ai.informatik.uni-dortmund.de/svm light

MODULAIRE BUYS BOISE HOMES PROPERTY

Modulaire Industries said it acquired the design li-
brary and manufacturing rights of privately-owned Boise
Homes for an undisclosed amount of cash. Boise Homes
sold commercial and residential prefabricated structures,
Modulaire said.

USX, CONSOLIDATED NATURAL END TALKS

USX Corp's Texas Oil and Gas Corp subsidiary and
Consolidated Natural Gas Co have mutually agreed not
to pursue further their talks on Consolidated's possible
purchase of Apollo Gas Co from Texas Oil. No details
were given.

JUSTICE ASKS U.S. DISMISSAL OF TWA FILING

The Justice Department told the Transportation De-
partment it supported a request by USAir Group that
the DOT dismiss an application by Trans World Air-
lines Inc for approval to take control of USAir. \Our
rationale is that we reviewed the application for control
�led by TWA with the DOT and ascertained that it did
not contain suÆcient information upon which to base a
competitive review," James Weiss, an oÆcial in Justice's
Antitrust Division, told Reuters.

E.D. And F. MAN TO BUY INTO HONG KONG
FIRM

The U.K. Based commodity house E.D. And F. Man Ltd
and Singapore's Yeo Hiap Seng Ltd jointly announced
that Man will buy a substantial stake in Yeo's 71.1 pct
held unit, Yeo Hiap Seng Enterprises Ltd. Man will de-
velop the locally listed soft drinks manufacturer into a
securities and commodities brokerage arm and will re-
name the �rm Man Paci�c (Holdings) Ltd.

Figure 2: Four documents from the Reuters-21578
category \corporate acquisitions" that do not share
any content words.

Heterogeneous Use of Terms. Consider the 4 documents
shown in Figure 2. All documents are Reuters-21578 articles
from the category \corporate acquisitions". Nevertheless,
the overlap between their document vectors is very small.
In this extreme case, the documents do not share any con-
tent words. The only words that occur in at least two docu-
ments are \it", \the", \and", \of", \for", \an", \a", \not",
\that", and \in". All these words are stopwords and it is un-
likely that they help discriminate between documents about
corporate acquisitions and other documents. However, each
document contains good keywords indicating a \corporate
acquisition", just that they are di�erent.

High Level of Redundancy. While there are generally
many di�erent features relevant to the classi�cation task, of-
ten several such cues occur in one document. These cues are
partly redundant. Table 1 [11] shows the results of an exper-
iment on the Reuters \corporate acquisitions" category. All
features (after stemming and stopword removal) are ranked
according to their (binary) empirical mutual information
(EMI) with the class label (cf. e.g. [14]). Then a naive
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Figure 3: Structure of the argument.

used features by EMI rank PRBE

1-200 89.6
201-500 71.3
501-1000 63.3
1001-2000 58.0
2001-4000 55.4
4001-9947 47.5

random (no learning) 21.8

Table 1: Learning without using the \best" features.

Bayes classi�er is trained using only those features ranked
1-200, 201-500, 501-1000, 1001-2000, 2001-4000, 4001-9947.
The results in Table 1 show that even features ranked low-
est still contain considerable information and are somewhat
relevant. A classi�er using only those \worst" features has a
precision/recall break-even point (PRBE) (e.g. [11]) much
better than random.

Frequency Distribution of Words and Zipf’s Law. The
occurrence frequencies of words in natural-language follow
Zipf's law [19]. Zipf's law states that if one ranks words by
their term frequency, the r-th most frequent words occurs
roughly 1

r
times the term frequency of the most frequent

words. This implies that there is a small number of words
that occurs very frequently, while most words occur very
infrequently.

4. A DISCRIMINATIVE MODEL OF TEXT
CLASSIFICATION

The goal of this section is a statistical learning model of
text-classi�cation tasks. Using a three step approach as il-
lustrated in Figure 3, it provides the relationship between
the properties of text-classi�cation tasks identi�ed above
and the expected error rate of an SVM. The �rst step shows
that large margin combined with low training error is a suf-
�cient condition for good generalization accuracy. The sec-
ond step abstracts the properties of text-classi�cation tasks
into a model, which the third step connects to large-margin
separation.

4.1 Step 1: Bounding the Expected Error
Based on the Margin

The following bound [14, 18] shows that large margin com-
bined with low training error leads to high generalization
accuracy. It uses results limiting the number of leave-one-
out errors [10, 13]. The key quantities are the margin Æ as
de�ned in Section 2, the maximum Euclidean length R of

the document vectors ~x, and the training loss
P

�i.

Theorem 1 (Bound on Expected Error of SVM).
The expected error rate E(Errn(hSVM )) of a SVM based on
n training examples with 0 � jj~xijj � R for all points with
non-zero probability and some constant C, is bounded by

E(Errn(hSVM)) �

� E
�
R2

Æ2

�
+ � C0 E

�
n+1P
i=1

�i

�

n+ 1

with C0 = C R2 if C � 1=(� R2), and C0 = C R2 + 1 other-
wise. For unbiased hyperplanes � equals 1, and for general
stable hyperplanes � equals 2. The expectations on the right
are over training sets of size n+ 1.

The proof can be found in [14]. Note the R acts as a
scaling constant for the margin Æ, as it can easily be seen in
Optimization Problem 1. For example, the squared margin
Æ2 can always be doubled by scaling the document vectors
~x to twice their length. The bound in Theorem 1 accounts
for such scaling.

4.2 Step 2: TCat-Concepts as a Model of Text-
Classification Tasks

Unfortunately, it is not possible to simply look at a new
text-classi�cation task and immediately have a good idea
of whether it has a large margin. The margin property is
observable only after training data becomes available and
requires training the SVM. To overcome this problem, this
second step lays the basis for connecting the large-margin
property with more intuitive and more meaningful proper-
ties of text-classi�cation tasks.
Consider the following stereotypical text classi�cation task.

While this task is arti�cial and hypothetical, it will serve as a
motivation for the model developed in this section. For this
example task, the following describes how documents from
the two classes di�er in terms of the frequency with which
certain types of words occur in them. Figure 4 graphically
illustrates the corresponding \word-frequency histogram".

Stopwords Independently of whether a document is from
the positive or the negative class, each document con-
tains 20 word occurrences from a set of 100 words
(i.e. lexicon entries). These high-frequency words are
typically considered stopwords. Note that this does
not specify the individual word frequences, i.e. it is
open whether one word occurs 20 times, or 20 di�er-
ent words each occur once, or something in between.

Medium Frequency There are 1,000 medium-frequency
words in the lexicon. From a subset of 600 such en-
tries, again each positive and negative document con-
tains (any bag of) 5 occurrences. But there are also
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Figure 4: A simple example of a TCat-concept.

two groups of 200 entries each that occur primarily in
positive or negative documents, respectively. In par-
ticular, from one group there are 4 occurrences in each
positive document and only 1 in each negative docu-
ment. Respectively, from the other group there are 4
occurrences in each negative document while there is
only one in each positive document.

Low Frequency Similarly, for the remaining 10,000 entries
in the low-frequency part of the lexion, there is a subset
of 4,000 entries of which there are 10 occurrences in
both positive and negative documents. But there are
two sets of 3,000 entries each that occur primarily in
positive or negative documents with a frequency of 9
versus 1.

In how far does this example resemble the properties of text-
classi�cation tasks identi�ed in Section 3?

High-Dimensional Input Space: There are 11,100 fea-
tures, which is on the same order of magnitude as real
text-classi�cation tasks.

Sparse Document Vectors: Each document is only 50
words long, which means there are at least 11,050 zero
entries in each document vector.

High Level of Redundancy: In each document there are
4 medium-frequency words and 9 low-frequency words
that indicate the class of the document. Considering
the document length of 50 words, this is a fairly high
level of redundancy.

Heterogeneous Use of Terms: Both the positive and the
negative documents each have a group of 200 medium-
frequency words and a group of 3,000 low-frequency
words. From each group there can be an arbitrary
subset of 4 for the medium-frequency words and 9 for
the low-frequency words in each document. Consid-
ering only the medium-frequency words, this implies
that there can be 50 documents in the same class that
do not share a single medium-frequency term from this
group. This mimics the property of text classi�cation
tasks identi�ed in Section 3.

Zipf's Law: There is a small number of words (100 stop-
words) that occur very frequently, a set of 1,000 words
of medium frequency, and a large set of 10,000 low-
frequency words. This does resemble Zipf's law.

To abstract from this particular example, the following def-
inition introduces a parameterized model that can describe
text-classi�cation tasks more generally.

Definition 1 (Homogeneous TCat-Concepts).
The TCat-concept

TCat([p1 : n1 : f1]; :::; [ps : ns : fs]) (8)

describes a binary classi�cation task with s disjoint sets of
features (i.e. words). The i-th set includes fi features. Each
positive example contains pi occurrences of features from the
respective set, and each negative example contains ni occur-
rences. The same feature can occur multiple times in one
document.

This de�nition does not include noise (e.g. violations of
the occurrence frequencies prescribed by the TCat-concept).
However, the model can be extended to handle noise in a
straightforward way [14]. Applying the de�nition to the
example in Figure 4, it is easy to verify that the example
can be described as a

TCat([20 :20 :100]; # high freq.
[4 :1 :200]; [1 :4 :200]; [5 :5 :600]; # medium freq.
[9 :1 :3000]; [1 :9 :3000]; [10 :10 :4000] # low freq.
)

concept. While this is an arti�cial example, is it possible to
model real text-classi�cation tasks as TCat-concepts?

Empirical Validation. Consider text-classi�cation tasks
from the Reuters-215782, the WebKB3, and the Ohsumed4

collection. The following analysis shows how they can be
modeled as TCat-concepts.
Let us start with the category \course" from the WebKB

collection. First, we partition the feature space into disjoint
sets of positive indicators, negative indicators, and irrelevant
features. Using the simple strategy [14] of selecting fea-
tures by their odds ratio, there are 98 high-frequency words
that indicate positive documents (odds ratio greater than
2) and 52 high-frequency words indicating negative docu-
ments (odds ratio less than 0.5). An excerpt of these words
is given in Figure 5. Similarly, there are 431 (341) medium-
frequency words that indicate positive (negative) documents
with an odds ratio greater than 5 (less than 0.2). In the low-
frequency spectrum there are 5,045 positive indicators (odds
ratio greater than 10) and 24,276 negative indicators (odds
ratio less than 0.1). All other words in the vocabulary are
assumed to carry no information.
To abstract from the details of particular documents, it

is useful to analyse what a typical document for this task
looks like. In some sense, an \average" document captures
what is typical. An average WebKB document is 277 words
long. For positive examples of the category "course", on
average 27.7% of the 277 occurrences come from the set of 98
high-frequency positive indicators while these words account

2http://www.research.att.com/�lewis/reuters21578.html
3http://www.cs.cmu.edu/afs/cs/project/theo-20/www/data
4ftp://medir.ohsu.edu/pub/ohsumed
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high frequency medium frequency low frequency

pos 98 words
all any assignment assignments
available be book c chapter
class code course cse descrip-
tion discussion document due
each eecs exam exams fall �nal
...
section set should solution so-
lutions spring structures stu-
dents syllabus ta text textbook
there thursday topics tuesday
unix use wednesday week will
you your

431 words
account acrobat adapted addi-
son adt ahead aho allowed al-
ternate announced announce-
ment announcements answers
appointment approximately
...
tuesdays turing turn turned
tuth txt uidaho uiowa ullman
understand ungraded units un-
less upenn usr vectors vi walter
weaver wed wednesdays weekly
weeks weights wesley yurttas

5045 words
002cc 009a 00a 00om 01oct
01pm 02pm 03oct 03pm 03sep
04dec
...
gradable gradebook grade-
books gradefreq1 gradefreq2
gradefreq3 graders gradesheet
gradients gra�ca gra�k
...
zimmermann zinc zipi zipser zj
zlocate znol zoran zp zwatch
zwhere zwiener zyda

neg

acm address am austin ca cali-
fornia center college computa-
tional conference contact cur-
rent currently d department dr
faculty fax graduate group he
...
me member my our paral-
lel performance ph pp pro-
ceedings professor publications
recent research sciences sup-
port technical technology uni-
versity vision was working

52 words

aaai academy accesses accurate
adaptation advisor advisory af-
�liated aÆliations agent agents
alberta album alumni amanda
america amherst annual
...
victoria virginia visiting vis-
itors visualization vita vitae
voice wa watson weather web-
ster went west wi wife wire-
less wisconsin worked work-
shop workshops wrote yale york

341 words

0a 0b 0b1 0e 0f 0r 0software
0x82d4� 100k 100mhz 100th
1020x620 102k 103k
...
lunar lunches lunchtime lund
lundberg lunedi lung luniewski
luo luong lupin lupton lure
lurker lus
...
zuo zuowei zurich zvi zw
zwaenepoel zwarico zwickau
zwilling zygmunt zzhen00

24276 words
high frequency medium frequency low frequency

Figure 5: Indicative words for the WebKB category \course" partitioned by occurrence frequency.

for only 10.4% of the occurrences in an average negative
document. Assessing the percentages analogously also for
the other word groups, they can be directly translated into
the following TCat-concept.

TCatcourse([77 : 29 : 98]; [4 : 21 : 52]; # high freq.
[16 : 2 : 431]; [1 : 12 : 341]; # medium freq.
[9 : 1 : 5045]; [1 : 21 : 24276]; # low freq.
[169 : 191 : 8116] # rest
)

This shows that the text-classi�cation task connected with
the WebKB category \course" can be modeled as a TCat-
concept, if one assumes that documents are of homogeneous
length and composition. It can be shown that this assump-
tion of homogeneity can be relaxed [14].
Similar TCat-concepts can also be found for other tasks.

For the Reuters-21578 category \earn" the same procedure
leads to the TCat-concept

TCatearn([33 : 2 : 65]; [32 : 65 : 152]; # high freq.
[2 : 1 : 171]; [3 : 21 : 974]; # medium freq.
[3 : 1 : 3455]; [1 : 10 : 17020]; # low freq.
[78 : 52 : 5821] # rest
)

as an average case model. The model for the Ohsumed cat-
egory \pathology" is

TCatpathology([2 : 1 : 10]; [1 : 4 : 22]; # high freq.
[2 : 1 : 92]; [1 : 2 : 94]; # medium freq.
[5 :1 :4080]; [1 :10 :20922]; # low freq.
[197 : 190 : 13459] # rest

):

Note that in particular the model for \pathology" is sub-
stantially di�erent from the other two. This veri�es that
TCat-concepts can capture some properties of real text-
classi�cation tasks that have the potential to di�erentiate
between tasks. The following studies their relevance for gen-
eralization performance.

4.2.1 Step 3: Learnability of TCat-Concepts
This �nal step provides the connection between TCat-

concepts and the bound for the generalization performance
of an SVM. The �rst lemma shows that homogeneous TCat-
concepts are generally separable with a certain margin. Us-
ing the fact that term frequencies obey Zipf's law, a second
lemma shows that the Euclidean length of document vectors
is small for text-classi�cation tasks. These two results lead
to the main learnability result for TCat-concepts.

Lemma 1 (Margin of Noise-Free TCat-Concepts).

For TCat([p1 : n1 : f1]; :::; [ps : ns : fs])-concepts, there is
always a hyperplane passing through the origin that has a
margin Æ bounded by

Æ2 �
ac� b2

a+ 2b+ c
with

a =
sP

i=1

p2i
fi

b =
sP

i=1

pini
fi

c =
sP

i=1

n2i
fi

(9)

Proof. De�ne ~pT = (p1; : : : ; ps)
T and ~nT = (n1; : : : ; ns)

T ,
as well as the diagonal matrix F with f1; : : : ; fs on the di-
agonal.

133132



The margin of the maximum-margin hyperplane that sep-
arates a given training sample (~x1; y1); : : : ; (~xn; yn) and that
passes through the origin can be derived from the solution
of the following optimization problem.

W (~w) = min
1

2
~wT ~w (10)

s:t: y1[~x
T
1 ~w] � 1

... (11)

yn[~x
T
n ~w] � 1

The hyperplane corresponding to the solution vector ~w� has
a margin Æ = (2W (~w�))�0:5. By adding constraints to this
optimization problem, it is possible to simplify its solution
and get a lower bound on the margin. Let us add the ad-
ditional constraint that within each group of fi features the
weights are required to be identical. Then ~wT ~w = ~vTF~v
for a vector ~v of dimensionality s. The constraints (11) can
also be simpli�ed. By de�nition, each example contains a
certain number of features from each group. This means
that all constraints for positive examples are equivalent to
~pT~v � 1 and, respectively, ~nT~v � �1 for the negative ex-
amples. This leads to the following simpli�ed optimization
problem.

W 0(~v) = min
1

2
~vTF~v (12)

s:t: ~pT~v � 1 (13)

~nT~v � �1 (14)

Let ~v� be the solution. Since W 0(~v�) � W (~w�), it follows
that Æ � (2W 0(~v�))�0:5 is a lower bound for the margin.
It remains to �nd an upper bound for W 0(~v�) that can be
computed in closed form. Introducing Lagrange multipliers,
the solution W 0(~v�) equals the value L(~v; �+; ��)

� of

L(~v; �+; ��) =
1

2
~vTF~v � �+(~p

T~v � 1) + ��(~n
T~v + 1) (15)

at its saddle-point. �+ � 0 and �� � 0 are the Lagrange
multipliers for the two constraints (13) and (14). Using the
fact that

dL(~v; �+; ��)

d~v
= 0 (16)

at the saddle point one gets a closed form solution for ~v.

~v = F�1 [�+~p� ��~n] (17)

For ease of notation one can equivalently write

~v = F�1XY ~� (18)

with X = (~p; ~n), Y = diag(1;�1), and ~�T = (�+; ��) ap-
propriately de�ned. Substituting into the Lagrangian re-
sults in

L(~�) = 1T ~��
1

2
~�TY XTF�1XY ~� (19)

To �nd the saddle points one has to maximize this function
over ~�T = (�+; ��)

T subject to �+ � 0 and �� � 0. Since
only a lower bound on the margin is needed, it is possible
to drop the constraints �+ � 0 and �� � 0. Removing the
constraints can only increase the objective function at the
solution. So the unconstrained maximum L0(~�)� is greater

or equal to L(~�)�. Setting the derivative of (19) to 0

dL0(~�)

d~�
= 0 , ~� = (YXTF�1XY )�11 (20)

and substituting into (19) yields the unconstrained maxi-
mum:

L0(~v; ~�)� =
1

2
1T (YXTF�1XY )�11 (21)

The special form of (YXTF�1XY ) makes it possible to com-
pute its inverse in closed form.

(YXTF�1XY )�1 =

�
~pTF�1~p �~pTF�1~n
�~nTF�1~p ~nTF�1~n

�
�1

(22)

=

�
a �b
�b c

�
�1

(23)

=
1

ac� b2

�
a b
b c

�
(24)

Substituting into (21) completes the proof.

The lemma shows that any set of documents, where each
document is fully consistent with the speci�ed TCat-concept,
is always linearly separable with a certain minimummargin.
Note that separability implies that the training loss

P
�i is

zero. While this paper considers only the case of full consis-
tency and zero noise, [14] shows how these assumtions can
be relaxed.
It remains to bound the maximum Euclidean length R

of document vectors before it is possible to apply Theorem
1. Clearly, the document vector of a document with l words
cannot have a Euclidean length greater than l. Nevertheless,
this bound is very loose for real document vectors. To bound
the quantity R more tightly it is possible to make use of
Zipf's law.
Assume that the term frequencies in every document fol-

low the generalized Zipf's law [15]

TFr =
c

(r+ k)�
(25)

with typical parameter values k � 5, � � 1:3, and c scaling
with document length. This assumption about Zipf's law
does not imply that a particular word occurs with a certain
frequency in every document. It is much weaker; it merely
implies that the r-th most frequent word in a document
occurs with a particular frequency. In slight abuse of Zipf's
law for short documents, the following lemma connects the
length of the document vectors to Zipf's law. Intuitively,
it states that many words in a document occur with low
frequency, leading to document vectors of relatively short
Euclidean length.

Lemma 2 (Length of Document Vectors). If the
ranked term frequencies TFr in a document with l terms
have the form of the generalized Zipf's law

TFr =
c

(r+ k)�
(26)

based on their frequency rank r, then the squared Euclidean
length of the document vector ~x of term frequencies is bounded
by

jj~xjj�

vuut dX
r=1

�
c

(r + k)�

�2
with d such that

dX
r=1

c

(r + k)�
= l
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Proof. From the connection between the frequency rank
of a term and its absolute frequency it follows that the r-th
most frequent term occurs

TFr =
c

(r + k)�
(27)

times. The document vector ~x has d non-zero entries which
are the values TF1; :::; TFd. Therefore, the Euclidian length
of the document vector ~x is

~xT~x =
dX

r=1

�
c

(r+ k)�

�2

(28)

Combining Lemma 1 and Lemma 2 with Theorem 1 leads
to the following main result.

Theorem 2 (Learnability of TCat-Concepts).
For TCat([p1 : n1 : f1]; :::; [ps : ns : fs])-concepts and
documents with l terms distributed according to the gener-
alized Zipf's law TFr =

c

(r+k)�
, the expected generalization

error of an (unbiased) SVM after training on n examples is
bounded by

E(Errn(hSVM)) � �
R2

n+1

a+2b+c

ac�b2
with

a =
sP

i=1

p2i
fi

b =
sP

i=1

pini
fi

c =
sP

i=1

n2i
fi

R2=
dP

r=1

�
c

(r+k)�

�2

unless 8si=1 : pi = ni. d is chosen so that
dP

r=1

c

(r+k)�
= l.

For unbiased SVMs � equals 1, and for biased SVMs � equals
2.

Proof. Using the fact that TCat-concepts are separable
(and therefore stable), if at least for one i the value of pi is
di�erent from ni, the result from Theorem 1 reduces to

E(Errn(hSVM)) �
1

n+ 1
� E

�
R2

Æ2

�
(29)

since all �i are zero for a suÆciently large value of C. Lemma
1 gives a lower bound for Æ2 which can be used to bound the
expectation

E

�
R2

Æ2

�
� �

a+ 2b+ c

ac� b2
E
�
R2
�

(30)

It remains for us to give an upper bound for E
�
R2
�
. R2 is

the maximum Euclidian length of any feature vector in the
training data. Since the term frequencies in each example
follow the generalized Zipf's law TFr =

c

(r+k)�
, it is possible

to use Lemma 2 to bound R2 and therefore E
�
R2
�
.

Empirical Validation. The TCat-model and the lemmata
leading to the main result suggest that text classi�cation
tasks are generally linearly separable (i.e.

P
�i = 0), and

that the normalized inverse margin R2=Æ2 is small. This
prediction can be tested against real data.

Reuters R2

Æ2

nP
i=1

�i

earn 1143 0
acq 1848 0
money-fx 1489 27
grain 585 0
crude 810 4
trade 869 9
interest 2082 33
ship 458 0
wheat 405 2
corn 378 0

WebKB R2

Æ2

nP
i=1

�i

course 519 0
faculty 1636 0
project 741 0
student 1588 0

Ohsumed R2

Æ2

nP
i=1

�i

Pathology 11614 0
Cardiovasc. 4387 0
Neoplasms 2868 0
Nervous Sys. 3303 0
Immunologic 2556 0

Table 2: Normalized inverse margin and training
loss for the Reuters (27,658 features), the WebKB
(38,359 features), and the Ohsumed data (38,679
features) for C = 50. As suggested by model-
selection experiments, TFIDF-weighting is used for
Reuters and Ohsumed, while the representation for
WebKB is binary. No stemming is performed and
stopword removal is used only on the Ohsumed data.

First, Table 2 indicates that all Ohsumed categories, all
WebKB tasks, and most Reuters-21578 categories are lin-
early separable (i.e.

P
�i = 0). This means that there is

a hyperplane so that all positive examples are on one side
of the hyperplane, while all negative examples are on the
other. Inseparability on some Reuters categories is often
due to dubious documents (consisting only of a headline) or
obvious misclassi�cations of the human indexers.
Second, separability is possible with a large margin. Table

2 shows the size of the normalized inverse margin for the ten
most frequent Reuters categories, the WebKB categories,
and the �ve most frequent Ohsumed categories. Intuitively,
R2=Æ2 can be treated as an \e�ective" number of parameters
due to it's link to VC-dimension [18]. Compared to the
dimensionality of the feature space, the normalized inverse
margin is typically small.
These experimental �ndings in connection with the the-

oretical results from above validate that TCat-concepts do
capture an important and widely present property of text
classi�cation tasks.

5. COMPARING THE THEORETICAL
MODEL WITH EXPERIMENTAL
RESULTS

The previous sections formally describes that a large ex-
pected margin with low training error leads to a low ex-
pected prediction error. Furthermore, they indicate how
margin is related to the properties of TCat-concepts, and
experimentally verify that real text-classi�cation tasks can
be modeled with TCat-concepts. This section veri�es not
only that the individual steps are well justi�ed, but also
that their conjunction produces meaningful results. To show
this, this section compares the generalization performance as
predicted by the model with the generalization performance
found in experiments.
In Section 4.2 a TCat-model for the WebKB category
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model experiment
E(Errn(hSVM)) Errntest(hSVM )

WebKB \course" 11.2% 4.4%
Reuters \earn" 1.5% 1.3%
Ohsumed \pathology" 94.5% 23.1%

Table 3: Comparing the expected error predicted
by the model with the error rate and the pre-
cision/recall breakeven point on the test set for
the WebKB category \course", the Reuters cate-
gory \earn", and the Ohsumed category \pathol-
ogy" with TF weighting and C = 1000. No stopword
removal and no stemming are used.

\course" was estimated. Furthermore, the parameters of
Zipf's law for the full WebKB collection are c = 470000,
k = 5, and � = 1:25. Subject to the assumptions of The-
orem 2, substituting the estimated values into the bound
leads to the following characterization of the expected er-
ror.

E(Errn(hSVM )) �
0:2331 � 1899:7

n+ 1
�

443

n+ 1
(31)

n denotes the number of training examples. Consequently,
after training on 3957 examples the model predicts an ex-
pected generalization error of less than 11.2%.
An analog procedure for the Reuters category \earn" leads

to the bound

E(Errn(hSVM)) �
0:1802 � 762:9

n+ 1
�

138

n+ 1
(32)

so that the expected generalization error after 9603 training
examples is less than 1.5%. Similarly, the bound for the
Ohsumed category \pathology" is

E(Errn(hSVM )) �
7:4123 � 1275:8

n+ 1
�

9457

n+ 1
; (33)

leading to an expected generalization error of less than 94.5%
after 10,000 training examples.
Table 3 compares the expected generalization error pre-

dicted by the estimated models with the generalization per-
formance observed in experiments. While it is unreasonable
to expect that the model precisely predicts the exact per-
formance observed on the test set, Table 3 shows that the
model captures which classi�cation tasks are more diÆcult
than others. In particular, it does correctly predict that
\earn" is the easiest task, \course" is the second easiest task,
and that \pathology" is the most diÆcult one. While the
TCat model is probably not detailed enough to be suitable
for performance estimation in most application settings (e.g.
[13]), this gives some validation that TCat-concepts can for-
malize the key properties of text-classi�cation tasks relevant
for learnability with SVMs. More can be found in [14].

6. SENSITIVITY ANALYSIS: DIFFICULT
AND EASY LEARNING TASKS

The previous section revealed that the bound on the ex-
pected generalization error can be large for some TCat-
concepts while it is small for others. Going through di�erent
scenarios, it is now possible to identify the key properties
that make a text-classi�cation task \easy" or \diÆcult" for
an SVM to learn [14].

Occurrence Frequency Given that the other parameters
stay constant, the bound on the error rate decreases,
if the frequency of the discriminative features is in-
creased.

Discriminative Power of Term Sets The extent to
which vocabulary di�ers between classes makes a
di�erence for learnability. The value of the bound
decreases, if the di�erence in class conditional word
frequencies increases.

Level of Redundancy The higher the redundancy, the
lower the bound on the generalization error. This im-
plies that it is desirable to have many clues in each
document.

Similarly, the model can be used to analyse the e�ect of
TFIDF weighting on the e�ectiveness of SVMs depending
on the properties of the task [14].

7. LIMITATIONS OF THE MODEL AND
OPEN QUESTIONS

Every model abstracts from reality in some sense and it
is important to clearly point the assumptions out.
First, each document is assumed to exactly follow the

same generalized Zipf's law, neglecting variance and dis-
cretization inaccuracies that occur especially for short doc-
uments. In particular, this implies that all documents are
of equal length.
Second, the model �xes the number of occurrences from

each word set in the TCat-model. While the degree of viola-
tion of this assumption can be captured in terms of attribute
noise, it might be useful and possible not to specify the ex-
act number of occurrences per word set, but only upper and
lower bounds. This could make the model more accurate.
However, it comes with the cost of an increased number of
parameters, making the model less understandable. While
the formal analysis of noise in [14] demonstrates that the
model does not break in the presence of noise, the bounds
could be tightened. Along the same lines, parametric noise
models could be incorporated to model the types of noise in
text-classi�cation problems.
Finally, the general approach taken in this paper is to

model only upper bounds on the error rate. While these
are important to derive suÆcient conditions for the learn-
ability of text-classi�cation tasks, lower bounds may be of
interest as well. They could answer the question of which
text-classi�cation tasks cannot be learned with SVMs.

8. RELATED WORK
While other learning algorithms can also be analyzed in

terms of formal models, these models typically make as-
sumptions unjusti�ed for text.
The most popular such algorithm is naive Bayes. Naive

Bayes is commonly justi�ed using assumptions of condi-
tional independence or linked dependence [3]. However,
these assumptions are generally accepted to be false for text.
While more complex dependence models can somewhat re-
move the degree of violation [17], a principal problem with
using generative models for text remains. Finding a genera-
tive models for natural language appears much more diÆcult
than solving a text classi�cation task. Therefore, this paper
presented a discriminative model of text classi�cation. It
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does not model language, but merely constrains the distri-
bution of words enough to describe classi�cation accuracy.
This way it is possible to avoid false independence assump-
tions.
Another model used to describe the properties of text is

the 2-Poisson model [1]. However, like the Bernoulli model
it is rejected by tests [8, 9]. Description oriented approaches
[7] [6] [5] provide powerful modeling tool and can avoid high-
dimensional feature spaces, but require implicit assumptions
in the way description vectors are generated.
While di�erent in its motivation and its goal, the work

of Papadimitriou et. al is most similar in spirit to the ap-
proach presented here [16]. They show that latent semantic
indexing leads to a suitable low-dimensional representation,
given assumptions about the distribution of words. These
assumptions are similar in how they exploit the di�erence
of word distributions. However, they do not show how their
assumptions relate to the statistical properties of text and
they do not derive generalization-error bounds.

9. SUMMARY AND CONCLUSIONS
This paper develops the �rst model of learning text classi-

�ers from examples that makes it possible to quantitatively
connect the statistical properties of text with the generaliza-
tion performance of the learner. The model is the result of
taking a discriminative approach. Unlike conventional gen-
erative models, it does not involve independence assump-
tions. The discriminative model focuses on those properties
of the text classi�cation tasks that are suÆcient for good
generalization performance, avoiding much of the complex-
ity of natural language.
Based on this discriminative model, the paper explains

how SVMs can achieve good classi�cation performance de-
spite the high-dimensional feature spaces in text classi�ca-
tion. The resulting bounds on the expected generalization
error give a formal understanding of what kind of text-
classi�cation task can be solved with SVMs. This makes
it possible to identify that { intuitively { high redundancy,
high discriminative power of term sets, and discriminative
features in the high-frequency range are suÆcient conditions
for good generalization. Finally, the model provides a formal
basis for developing new algorithms that are most appropri-
ate in speci�c scenarios.
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